期刊文献+

广义Zakharov-Kuznetsov方程的若干能量守恒算法

SOME ENERGY CONSERVATIVE ALGORITHMS FOR GENERALIZED ZAKHAROV-KUZNETSOV EQUATION
原文传递
导出
摘要 本文基于哈密尔顿偏微分方程的多辛形式,利用平均值离散梯度构造了若干二维广义Zakharov-Kuznetsov方程的能量守恒算法,包括一个局部能量守恒算法及一个整体能量守恒算法.并证明了在周期边界条件下,两个格式均保持离散整体能量.数值例子验证了方法的有效性及正确性. In this paper, based on multi-symplectic formulation of Hamiltonian PDEs, we develop several energy conservative algorithms for two-dimensional generalized Zakharov-Kuznetsov equation by using the mean value discrete gradient, including a local energy conservative algorithm and a global energy conservative algorithm. We prove that both schemes preserve the discrete global energy under periodic boundary conditions. Numerical experiments are presented to verify the efficiency and accuracy of the method.
作者 郭峰 Guo Feng(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)
出处 《数值计算与计算机应用》 2018年第3期183-194,共12页 Journal on Numerical Methods and Computer Applications
关键词 广义Zakharov-Kuznetsov方程 能量守恒 平均值离散梯度 傅里叶拟谱方法 generalized Zakharov-Kuznetsov equation energy conservation the mean value discrete gradient Fourier pseudospectral method
  • 相关文献

参考文献2

二级参考文献24

  • 1WANG Yushun, WANG Bin & QIN MengzhaoLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China,School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China,School of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100080, China.Concatenating construction of the multisymplectic schemes for 2+1-dimensional sine-Gordon equation[J].Science China Mathematics,2004,47(1):18-30. 被引量:17
  • 2李延欣,丁培柱,吴承埙,金明星.A_2B模型分子经典轨迹的辛算法计算[J].高等学校化学学报,1994,15(8):1181-1186. 被引量:14
  • 3刘林,廖新浩,赵长印,王昌彬.辛算法在动力天文中的应用(Ⅲ)[J].天文学报,1994,35(1):51-66. 被引量:14
  • 4Feng K. On difference schemes and symplectic geometry [ A]. In feng K, ed. Proc 1984 Beijing syrmp diff geomety and diff equations.Beijing: Science press, 1985,42 - 58.
  • 5Shang Z J. Construction of volume preserving difference schemes for sour-free system voa generating function [ J]. J Comput Math,1994b, 12:265 - 272.
  • 6石钟慈,等.冯康文集[M].国防工业出版社,1995.
  • 7Feng K, Wu H M, Qin M Z, Wang D L. Construction of canonical difference schemes for Hamihonian formalism via generating functions [J] .Jour Comp Math, 1989,7( 1 ) :71 - 96.
  • 8Sanz-Serna J M, Calvo M P. Numerical Hamiltonian System [ M]. London: Chapman, 1994.
  • 9Yoshida H. Construction of higher order symplectic integrators [J]. Phys Lett A, 1990 ,150 : 262 - 269.
  • 10Qin M Z,Zhu W J. Construction of higher order symplectic schemes by compositions [J]. Computing, 1992,47:309 - 321.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部