期刊文献+

The coexistence of quasi-periodic and blow-up solutions in a superlinear Duffing equation

The coexistence of quasi-periodic and blow-up solutions in a superlinear Duffing equation
原文传递
导出
摘要 In this paper, we construct a continuous positive periodic function p(t) such that the corresponding superlinear Duffing equation x′′+ a(x)^(x2n+1)+p(t)x^(2m+1)= 0, n + 2≤2 m+1<2n+1 possesses a solution which escapes to infinity in some finite time, and also has infinitely many subharmonic and quasi-periodic solutions, where the coefficient a(x) is an arbitrary positive smooth periodic function defined in the whole real axis. In this paper, we construct a continuous positive periodic function p(t) such that the corresponding superlinear Duffing equation x″+ a(x)x^2n+1+p(t)x^2m+1= 0, n + 2≤2 m+1〈2n+1 possesses a solution which escapes to infinity in some finite time, and also has infinitely many subharmonic and quasi-periodic solutions, where the coefficient a(x) is an arbitrary positive smooth periodic function defined in the whole real axis.
出处 《Science China Mathematics》 SCIE CSCD 2018年第9期1589-1602,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.11571041) the Fundamental Research Funds for the Central Universities
关键词 superlinear Duffing equations BLOW-UP quasi-periodic solutions 周期 方程 共存 有限时间 多次谐波 无穷 函数
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部