期刊文献+

Stability of a CD4^+ T cell viral infection model with diffusion 被引量:2

Stability of a CD4^+ T cell viral infection model with diffusion
原文传递
导出
摘要 This paper is devoted to the study of the stability of a CD4^+ T cell viral infection model with diffusion. First, we discuss the well-posedness of the model and the existence of endemic equilibrium. Second, by analyzing the roots of the characteristic equation, we establish the local stability of the virus-free equilibrium. Furthermore, by constructing suitable Lyapunov functions, we show that the virus-free equilibrium is globally asymptotically stable if the threshold value R0 ≤1; the endemic equilibrium is globally asymptotically stable if R0 〉 1 and du^* - δw^* ≥0. Finally, we give an application and numerical simulations to illustrate the main results.
出处 《International Journal of Biomathematics》 SCIE 2018年第5期217-232,共16页 生物数学学报(英文版)
关键词 Global stability viral infection model DIFFUSION general incidence rate Lyapunov functions. 稳定性 CD4 病毒 模型 感染 房间 Lyapunov 方程的根
  • 相关文献

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部