期刊文献+

25Cr2Ni4MoV合金锻件断裂韧性试验影响因素的研究 被引量:1

Research of Influencing Factors on Fracture Toughness Test Results of Forging Alloy 25Cr2Ni4MoV
下载PDF
导出
摘要 利用卸载柔度法对25Cr2Ni4MoV进行断裂韧性试验,对比研究了初始裂纹长度、试样尺寸、试验参数及数据处理方法对试验结果的影响。结果表明:随着初始裂纹长度的增加,测得的断裂韧性值减小,试验中加载所需要的最大载荷也逐渐降低;紧凑拉伸CT25(25mm厚)试样得到的断裂韧性值大于CT38(38mm厚)试样;当加载速率较低(<1.5 MPa·m^(0.5)·s^(-1))时,加载速率变化对试验结果影响不大;当加载速率继续增大时,测得的断裂韧性值减小;随着保载时间的延长,测得的断裂韧性值减小;GB/T 21143-2014和ASTM E1820-2016在钝化线斜率、有效数据判定和拟合曲线方程等方面对数据处理结果影响较大,且前者得到的试验结果比后者要小。 Through fracture toughness tests of alloy 25 Cr2Ni4MoV conducted by single sample unloading compliance method,the influence of following factors on the test results was investigated,such as the initial crack length,specimen size,test parameters and the data processing method,etc.Results show that both the fracture toughness measured and the maximum load applied in the test reduce with the rise of initial crack length.The fracture toughness obtained with CT25(25 mm thick)specimen is higher than with CT38(38 mm thick)specimen.At low loading rate(〈1.5 MPa·m(0.5)·s^-1),the measured data of fracture toughness is slightly affected by the loading rate,which would reduce when the loading rate is further increased;the longer the holding time is,the smaller the measured data of fracture toughness would be.The main differences between GB/T 21143-2014 and ASTM E1820-2016 lie in such data processing methods as the blunting line,valid data judgment and the curvilinear equation,etc.,and the values calculated with the former standard would be lower than that with the latter one.
作者 田根起 侍克献 万海波 王延峰 TIAN Genqi;SHI Kexian;WAN Haibo;WANG Yanfeng(Shanghai Power Equipment Research Institute Co.,Ltd.,Shanghai 201114,China)
出处 《动力工程学报》 CAS CSCD 北大核心 2018年第9期768-772,共5页 Journal of Chinese Society of Power Engineering
基金 重大专项课题资助项目(2015ZX06002004-001) 院青年基金资助项目(201608061Q)
关键词 断裂韧性 裂纹长度 试样尺寸 试验参数 标准对比 fracture toughness crack length specimen size test parameters standard comparison
  • 相关文献

参考文献3

二级参考文献19

  • 1[1]Timofeev B T, Blumin A A, Anikovsky ⅤⅤ. Fracture toughness of low carbon steels and their weldments. Int. J. of Pressure Vessels and Piping, 1998, 75: 945 ~ 950.
  • 2[2]Putatunda Susil K. Fracture toughness of high carbon and high silicon steel. Materials Science and Engineering, 2001, A297:31 ~ 43.
  • 3[3]Tahtinen S, Laukkanen A, Singh B N. Damage mechanisms and fracture toughness of GlidCop(R) CuAl25 IGO copper alloy. J. of Nuclear Materials, 2000, 283~287:1028~1032.
  • 4[4]Nagal G, Blauel J G. Evaluation of the standard master curve for fracture toughness determination. Nuclear Engineering and Design, 1999, 190:159~169.
  • 5[5]Lambrigger M. Master curve for brittle cleavage fracture toughness testing. Engineering Fracture Mechanics, 1996, 55(4):677~678.
  • 6[6]Liebowitz H. Fracture. Vol. Ⅱ, New York: Academic Press, 1968.
  • 7姚衡,邓枝生,邓其源.GB/T 2038-1991 金属材料延性断裂韧度JIC的试验方法[S].北京:中国标准出版社,1991.
  • 8ASTM International ASTM E813-1989 Standard test method for JIC,a measure of fracture toughness[S] //Annual Book of ASTM Standards:Vol.3.01.Philadelphia,PA:American Society for Testing and Materials,2002.
  • 9ASTM International ASTM E182-2006 Standard test methods for measurement of fracture toughness[S] //Annual Book of ASTM Standards:Vol.3.01.Philadelphia,PA:American Society for Testing and Materials,2006.
  • 10International Organization for Standardization.ISO 12135-2002(E) International standard of unified method of test for the determination of quasistatic fracture toughness[S].2002.

共引文献43

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部