期刊文献+

最大后验推断在近似推断中的应用

Application of the maximum posterior inference in approximation inference
下载PDF
导出
摘要 文章介绍了几个基本的技巧,用来解决难以处理的推断问题。在深度学习中难以处理的推断问题通常源于结构化图模型中隐变量之间的相互作用。这些相互作用可能是无向模型的直接作用,也可能是有向模型中同一个可见变量的共同祖先之间的explaining away作用。 This article introduces several basic techniques to solve difficult inferential problems. Inferential problems that are difficult to deal with in deep learning are usually derived from the interaction between implicit variables in the structured graph model. These interactions may be the direct effect of the undirected model, or may be the interaction between the common ancestor of the same visible variable in the model.
作者 来学伟 Lai Xuewei(College of Information Media,Sanmenxia Polytechnic,Sanmenxia 472000,China)
出处 《无线互联科技》 2018年第18期113-114,共2页 Wireless Internet Technology
关键词 近似推断 优化 期望最大化 approximate inference optimization expectancy maximization
  • 相关文献

参考文献2

二级参考文献64

  • 1James J. How Much Data is Created Every Minute? [EB/OL]. (2012-06-08)[2014-07-20]. http://www.domo.com/ blog/20 12/06/how -much-data- is-created-every-minute/.
  • 2James J. Data Never Sleeps 2.0 [EB/OL]. (2014-04-23) [2014-07 -20]. http://www.domo.com/blog/20 14/04/datanever-sleeps-2-0/ .
  • 3Minsky M L, Papert S. Perceptrons: An Introduction to Computational Geometry[M]. MIT press Cambridge, 1969: 105-110.
  • 4Hinton G E, Salakhutdinov R. Reducing the Dimensionality of Data with Neural Networks [J]. Science, 2006, 313(5786).
  • 5Bengio Y, Lamblin P, Popovici D, et al. Greedy LayerWise Training of Deep Networks [G]// Scholkopf B, Platt J, Hofmann T. Advances in Neural Information Processing Systems 19. Massachusetts Institute of Tchnology Press, 2007: 153.
  • 6Ranzato M, Huang F J, Boureau Y L, et al. Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition 2007. IEEE, 2007: 1-8.
  • 7Lee H, Ekanadham C, Ng A Y. Sparse Deep Belief Net Model for Visual Area V2 [C]// Advances in Neural Information Processing Systems 20. Neural Information Processing Systems Foundation, Inc., 2007: 873-880.
  • 8Deng L, Yu D. Deep Learning: Methods and Applications [R]. NOW Publishers, 2014.
  • 9Bengio Y. Learning Deep Architectures for AI [J]. Foundations and trends in Machine Learning, 2009, 2(1): 1-127.
  • 10Serre T, Kreiman G, Kouh M, et al. A Quantitative Theory of Immediate Visual Recognition [G]. Cisek P, Drew T, Kalaska J F. Progress in Brain Research: 165: Computational Neuroscience: Theoretical Insights into Brain Function. Elsevier, 2007: 33-56.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部