期刊文献+

基于有限元的埋入式光电PCB高温层压应力分析 被引量:1

Stress Analysis for High Temperature Lamination of Buried EOPCB Based on Finite Elements
下载PDF
导出
摘要 对在传统PCB中实现光波导埋置结构进行了温度-应力耦合场有限元分析研究,以应对制造加工过程中高温高压对其可靠性的影响。详细介绍了埋入式光电PCB热力学有限元模型的建模过程与温度-应力场可靠性研究的基本原理。对埋入式光电PCB实例进行研究,分析在现有制造加工技术条件下温度和应力对其结构可靠性的影响。结果表明,现有埋入式光电PCB制造加工工艺中加载的温度与应力不会对其结构造成功能性破坏,证明了设计制造方案的可行性。 The temperature-stress coupling field’s finite element analysis of optical waveguide embedded structure implemented in traditional PCB was carried out to deal with the influence of high temperature and high pressure on the reliability of manufacturing process. The modeling process of the thermodynamic finite element model of the buried photoelectric PCB and the basic principle of the reliability study of the temperature-stress field were introduced in detail. The example of buried photoelectric PCB was studied to analyze the influence of the temperature and stress on the reliability of its structural under the existing manufacturing and processing technology conditions. The results show that the temperature and stress loaded in the existing manufacturing process of buried photoelectric PCB will not cause functional damage to the structures, which proves the feasibility and engineering significance of the design and manufacturing scheme.
作者 刘晨 张赟 陈廷奇 张凌飞 LIU Chen;ZHANG Yun;CHEN Tingqi;ZHANG Lingfei(Institute of Electronic CAD,Xidian University,Xi'an 710071,China;School of Computer,Qinghai Normal University,Xining 810008,China)
出处 《电子工艺技术》 2018年第5期249-252,268,共5页 Electronics Process Technology
基金 国家自然科学基金项目(项目编号:61771363) 国防基础预研基金项目(项目编号:JCKY2016210B009) 青海省重点研发与转化计划基金项目(项目编号:2018-NN-151)
关键词 埋入式光电PCB 温度-应力场 有限元分析 可靠性 buried photoelectric PCB temperature-stress field finite element analysis reliability
  • 相关文献

参考文献3

二级参考文献28

  • 1金曦.光电路板技术研究进展及其应用[J].印制电路信息,2009,0(S1):489-498. 被引量:2
  • 2JOHN H Lan. Low cost flip chip technologies for DCA, WLCSP, and PBGA assemblies [M]. New York: McGraw-Hill, 2000.
  • 3LEE H K. An analysis of reliability of a wafer level package (WLP) using a silicone under the bump (SUB) configuration [J]. Int Electron Manuf Technol, 2006, 93-101.
  • 4J. Shin, Ch. S. Seo, A. Chellappa, M. Brooke, A. Chat- terjee, and N. M. Jokerst, in Proceedings of IEEE 2003 Electronic Components and Technology Conference 1067 (2003).
  • 5H. Cho, P. Kapur, and K. C. Saraswat, J. Lightwave Technol. 22, 2021 (2004).
  • 6L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmiir, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, in Proceedings of IEEE 2007 Electronic Components and Technology Conference 1288 (2007).
  • 7K. B. Yoon, I. K. Cho, S. H. Ahn, M. Y. Jeong, D. J. Lee, Y. U. Heo, B. S. Rho, H. H. Park, and B. H. Rhee, J. Lightwave Technol. 22, 2119 (2004).
  • 8S. H. Hwang, M. H. Cho, S. K. Kang, T. W. Lee, H. H. Park, and B. S. Rho, IEEE Photon. Technol. Lett. 19, 411 (2007).
  • 9M. Schneider and T. Kuhner, in Proceedings of IEEE 2008 Electronic Components and Technology Conference 276 (2008).
  • 10K. Schmieder and K. J. Wolter, in Proceedings of IEEE 2000 Electronic Components and Technology Conference 749 (2000).

共引文献8

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部