摘要
首先在高斯投影复变函数表示的基础上,给出了复数归化纬度的定义及公式;然后基于复数归化纬度,推导出子午线收敛角、长度比的复数表现形式;最后给出了高斯投影正反解子午线收敛角、长度比的实数解。基于复数纬度的高斯投影,其计算精度不受带宽的限制,对于高斯投影理论有一定改善。
On the basis complex function representation of Gauss projection, the definition and formula is given based on the complex reduced latitude.Secondly, based on the complex reduced latitude, the complex function representation is deduced about the length ratio and meridian convergence angle.Finally, the calculation formula is given about Gauss projection, get the real solution of length ratio amt meridians convergence.Based on the complex function latitude, Gauss projection calculation accuracy is not limited by the projection zonewidth and has a certain improvement for Gauss projection theory.
作者
金立新
魏桂华
许常文
JIN Lixin;WEI Guihua;XU Changwen(China Railway First Survey and Design Institute Group Ltd.,Xi'an 710043,China;Gansu Railway Survey and Enginteering Institute Co.Ltd.,Lanzhou 730000,China)
出处
《测绘通报》
CSCD
北大核心
2018年第9期103-107,147,共6页
Bulletin of Surveying and Mapping
基金
国家自然科学基金(41574009)
关键词
高斯投影
子午线收敛角
长度比
复数等角纬度
复数底点纬度
复数归化纬度
Gauss projection
meridians convergence
length ratio
conformal latitude of complex function
pedal latitude of complexfunction
reduced latitude of complex function