期刊文献+

基于钛酸锂负极和聚三苯胺正极的电池电容体系 被引量:3

Hybrid Battery-Capacitor System Based on Li_4Ti_5O_(12) Anode and PTPAn Cathode
下载PDF
导出
摘要 由于高安全、高功率和超长循环寿命等优点,钛酸锂负极材料近年来得到了广泛关注,基于钛酸锂负极的高性能超级电池电容器和锂离子电池也成为近年来的研究热点.本文采用化学氧化法制备了有机物正极材料聚三苯胺,并通过经典的电化学测试方法研究了其储能机理及相应的电极动力学过程.研究结果表明,该有机物正极的储能机制主要是基于阴离子的吸脱附反应,并表现出85 m A·g-1的可逆容量,且其动力学过程不受扩散控制,属于典型的赝电容行为.将该正极与钛酸锂负极结合构成了新型的电池电容体系,并对其电化学性能进行了研究,结果表明该体系具有高功率特性,且能量密度高于传统的混合型超级电容器.此外,本文还对该有机物正极的不足和实际应用中所面临的挑战做了初步分析. Owing to its high safe, high rate and long life characteristics, lithium titanate(Li4Ti5O12) anode material has attracted extensive attention in recent years, and many efforts are being made to develop the Li4Ti5O12 based high performance hybrid supercapacitors and Li-ion batteries. Herein, we prepared the organic cathode material polytriphenylamine(PTPAn) through chemical oxidation and polymerization of triphenylamine(TPAn), and investigated its charge storage mechanism and electrode kinetics with the typical electrochemical methods in an organic electrolyte. It was demonstrated that the PTPAn exhibited the reversible capacity of 85 m A·g-1. The charge storage depended on the reversible adsorption/desorption of anion, which is not controlled by the diffusion process, and thus, can be considered as the pseudocapacitive behavior. Then, the PTPAn cathode was coupled with the Li4Ti5O12 anode to form a hybrid capacitor/battery system with high power and improved energy density. Finally, the inherent drawback and the challenge for practical application of such an organic cathode are briefly discussed.
作者 苏秀丽 董晓丽 刘瑶 王永刚 余爱水 SU Xiu-li;DONG Xiao-li;LIU Yao;WANG Yong-gang;YU Ai-shui(Department of Chemistry,Fudan University,Shanghai 200438,China;Shanghai Elect Group Co Ltd,Center Academy,Shanghai 200070,China)
出处 《电化学》 CAS CSCD 北大核心 2018年第4期324-331,共8页 Journal of Electrochemistry
基金 国家自然科学基金项目(No.21473040)资助
关键词 聚三苯胺 钛酸锂 混合型超级电容器 锂离子电池 polytriphenylamine Li4Ti5O12 hybrid supercapacitor Li-ion battery
  • 相关文献

参考文献1

二级参考文献13

  • 1何则强,熊利芝,陈上,吴显明,刘文萍,黄可龙.Li_4Ti_5O_(12)-聚苯胺复合材料的合成与表征[J].无机化学学报,2007,23(8):1382-1386. 被引量:6
  • 2Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of the Electrochemical Society, 1995, 142(5): 1431-1435.
  • 3Kim D H, Ahn Y S, Kim J. Polyol-mediated synthesis of Li4Ti5O12 nanoparticle and its electrochemical properties[J]. Electrochemistry Communications, 2005, 7(12): 1340-1344.
  • 4Li J R, Tang Z L, Zhang Z T. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12[J]. Electrochemistry Communications, 2005, 7(9): 894-899.
  • 5Gao J, Ying J R, Jiang C Y, et al. High-density spherical Li4Ti5O12/C anode material with good rate capacity for lithium ion batteries[J]. Journal of Power Sources, 2007, 166(1): 255-259.
  • 6Zhu N, Liu W, Xue M Q, et al. Graphere as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(20): 5813-5818.
  • 7Li X, Qu M Z, Yu Z L. Preparation and electrochemical performance of Li4Ti5O12/graphitized carbon nanotubes composite[J]. Solid State Ionics, 2010, 181(13/14): 635-639.
  • 8Wang J, Liu X M, Yang H, et al. Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol-gel method[J]. Journal of Alloys and Compounds, 2011, 509(3): 712-718.
  • 9Shen L F, Yuan C Z, Luo H J, et al. In situ growth of Li4Ti5O12 on mulit-walled carbon nanotubes: Novel coaxial nanocalbes for high rate lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(3): 761-767.
  • 10Cai R, Yu X, Liu X Q, et al. Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance[J]. Journal of Power Sources, 2010, 195(S1): 8244-8250.

同被引文献27

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部