期刊文献+

环状构象PEG改性表面及其优越的抗凝血性能 被引量:2

Modified surface by poly(ethylene glycol) with looped conformation and its superior anticoagulant property
原文传递
导出
摘要 聚乙二醇(PEG)因其优异的抗蛋白质吸附能力成为抗凝血材料的首选.目前,多数研究都集中在PEG链长和接枝密度对蛋白质吸附的影响,鲜有关注PEG链构象影响的研究.本文利用硫金键在石英晶体微天平金片表面构建了两种不同分子量(MW=1000和MW=5000)的环状(SH-PEG-SH)和线型(m PEG-SH)构象的PEG改性表面,并研究了其抗纤维蛋白原吸附机理和抗凝血性能.X射线光电子能谱仪和原子力显微镜确定了不同表面的组成及其相结构.结果发现,环状构象的PEG表面相对于线型PEG构象能更加有效地抑制纤维蛋白原的吸附,同时具有更加优异的抗血小板和红细胞黏附性能.分析其蛋白质吸附机理发现,当PEG分子量较低时(MW=1000),其环状构象PEG表面抗纤维蛋白原吸附机理源于较高的表面覆盖率;当PEG分子量较高时(MW=5000),其抗纤维蛋白原吸附机理源于高黏弹性和高表面覆盖率共同作用的结果.本工作为构建抗凝血涂层提供了新的思路,并为制备高性能生物医用材料提供了理论基础. Poly(ethylene glycol) (PEG) is currently the gold standard for anticoagulant coatings. Up to now, most researchers focused on the impact of chain length and grafting density of PEG on protein adsorption, but few concerned about the effect of PEG conformation. Gold surfaces of quartz crystal microbalance with dissipation (QCM-D) with looped (SH-PEG-SH) and linear (SH-PEG) PEGs with different molecular weights (Mw=1000 and Mw=5000) are prepared. Subsequently, fibrinogen adsorption and anticoagulant properties are measured as well. The compositions and phase structures of PEG modified surfaces are characterized by XPS and AFM. Compared with linear PEG surface, we find that looped PEG surface more efficiently prohibits fibrinogen adsorption, and then has superior antiplatelet and anti-erythrocytes adhesions properties. Fibrinogen adsorption results suggest that when the molecular weight of PEG is low (Mw=1000), the main reason for the fibrinogen resistance of looped PEG is the large surface coverage; when the molecular weight of PEG is high (Mw=5000), the fibrinogen resistance mechanism of looped PEG is a combination of the high viscoelasticity and the large surface coverage. This article provides valuable evidence and guidance for anticoagulant coating and application of high-performance biomaterials.
作者 金晶 胡宇 韩媛媛 姜伟 Jing Jin;Yu Hu;Yuanyuan Han;Wei Jiang(State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China)
出处 《中国科学:化学》 CAS CSCD 北大核心 2018年第8期972-980,共9页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(编号:51673196 21674115) 国家重点研发计划(编号:2017YFC1104800) 吉林省科技发展项目(编号:20160520139JH)资助
关键词 聚乙二醇 环状构象聚合物表面 蛋白质吸附 抗凝血性能 石英晶体微天平 poly(ethylene glycol) looped polymer surface protein adsorption anticoagulant QCM-D
  • 相关文献

参考文献2

二级参考文献74

  • 1Ostuni E, Yan L, Whitesides G M. The interaction of proteins and cells with self-assembled monolayers of alkanethiolates on gold and silver. Colloid Surf B, 1999, 15(1): 3-30.
  • 2Denis F A, Hanarp P, Sutherland D S, et al. Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir, 2002, 18(3): 819-828.
  • 3Nath N, Hyun J, Ma H, et al. Surface engineering strategies for control of protein and cell interactions. Surf Sci, 2004, 570(1-2): 98-110.
  • 4Chen H, Brook M A, Sheardown H D, et al. Generic bioaffinity silicone surfaces. Bioconjugate Chem, 2006, 17:21-28.
  • 5Chen H, Chen Y, Sheardown H D, et al. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials, 2005, 26:7418-7424.
  • 6Chen H, Brook M A, Chen Y, et al. Surface properties of PEO-silicone composites: Reducing protein adsorption. J Biomater Sci Polymer Edn, 2005, 16(4): 531-548.
  • 7Chen H, Zhang Z, Chen Y, et al. Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide). Biomaterials, 2005, 26:2391-2399.
  • 8Chen H, Brook M A, Sheardown H. Silicone elastomers for reduced protein adsorption. Biomaterials, 2004, 25:2273-2282.
  • 9Curtis A S G, Varde M. Control of cell behaviour: Topological factors. J Nat Cancer Res Inst, 1964, 33:15-26.
  • 10Curtis A, Wilkinson C. Topographical control of cells. Biomaterials, 1997, 18(24): 1573-1583.

共引文献15

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部