期刊文献+

河渠水位线性变化条件下河渠-潜水非稳定流模型及其解 被引量:5

Solution of the Transient Stream-Groundwater Model With Linearly Varying Stream Water Levels
下载PDF
导出
摘要 在河渠水位迅速变化后再缓慢变化的条件下,建立了河渠半无限潜水含水层中非稳定渗流模型.利用Boussinesq第一线性化方法及Laplace变换,并注意应用Laplace变换中的"积分性质",给出形式相对简单、由常用函数表达的解,阐述特定解及其相应的物理意义.由解所揭示的潜水位变化规律表明,含水层任一点处潜水位变动速度的时间变化曲线形态是固定的,与河渠边界水位变动速率λ无关;潜水最大变速发生的时间,随λ呈非线性位移.依据潜水位变化规律,建立利用潜水位变动速度求含水层参数的方法,并用实例演示了拐点法求参数的过程. Based on the first linearized Boussinesq equation,the analytical solution of the transient groundwater model for description of phreatic flow in a semi-infinite aquifer bordered by a linear stream with linearly varying stream water levels,was derived through the Laplace transform and in view of the integral property of the Laplace transform. The solution is composed of some common functions and its expression form is relatively simple. According to the mathematical characteristics of the solution,its corresponding physical meaning was discussed. The variation rule of the phreatic level revealed by the solution shows that the temporal variation curve of the aquifer at any point is fixed and has nothing to do with the change rate of the water level of the river channel. The time of the maximum speed change of the phreatic aquifer nonlinearly varies with λ. Based on the variation rule of the phreatic level,the method determining the aquifer parameters with the changing velocity of the phreatic level was established,and the process of obtaining the parameter with the inflection point method was demonstrated through an example.
作者 吴丹 陶月赞 林飞 WU Dan;TAO Yuezan;LIN Fei(School of Civil and Hydraulic Engineering,Hefei University of Technology,Hefei 230009,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2018年第9期1043-1050,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金(51309071)~~
关键词 潜水非稳定流 河渠边界 水位线性变化 LAPLACE变换 积分性质 phreatic flow channel boundary linearly varying water level Laplace transform integral property
  • 相关文献

参考文献3

二级参考文献24

  • 1陶月赞,席道瑛.垂直与水平渗透作用下潜水非稳定渗流运动规律[J].应用数学和力学,2006,27(1):53-59. 被引量:18
  • 2薛禹群 朱学愚.地下水动力学[M].北京:地质出版社,1978.63-120.
  • 3毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1988.97-123.
  • 4Mehmet E B, Zekai S. Forchheimer groundwater flow law type curves for leaky aquifers[J]. Journal of Hydrologic Engineering, 2004,9( 1 ) :51 - 59.
  • 5Valentijin R N P, Niko E C V, Francois P D T. A metahillslope model based on an analytical solution to a linearized Boussinesq equation for temporally variable recharge rates [J].Water Resources Research, 2002,38 (12) : 1 - 14.
  • 6Woo S B, Philip L F L. Water table profiles and discharges for an inclined ditch-drained aquifer under temporally variable recharge[ J ] . Journal of irrigation and Drainage Engineering, 2003,129 (2) :93 - 99.
  • 7Upadhyaya A, Chauhan H S. Water table fluctuations due to canal seepage and tittle varying recharge [J]. Journal of Hydrology,2001,244( 1 - 2) : 1 - 8.
  • 8Mohamed M H, Morihiro H, Miguel A M. Hydraulics of stream flow routing with bank storages[J] . Journal of Hydrologic Engineering, 2002,7( 1 ) :76 - 89.
  • 9Morris L M, Mustafa M A. Analytical Contaminant Transport Analysis System( ACTS)Imuhimedia environmental fate and transport [ J ]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2004,8 (3) : 181 - 198.
  • 10Sergio E S.Modeling groundwater flow under transient nonlinear free surface[ J].Journal of Hydrologic Engineering,2003,8(3):123-132.

共引文献14

同被引文献28

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部