期刊文献+

石墨烯负载有序介孔硫化锌纳米棒复合材料的制备及光催化性能 被引量:6

Preparation and Photocatalytic Properties of Ordered Mesoporous ZnS Nanorods Loading on Graphene Composite
下载PDF
导出
摘要 采用微波辅助加热法制备了石墨烯负载有序介孔硫化锌纳米棒复合材料,研究了复合材料的微观形貌和物相组成,分析了氧化石墨烯含量(0~15%,质量分数)、微波加热功率(320~800 W)和时间(0~80min)对微观形貌和光催化性能的影响,并对复合材料的形成机理以及微观形貌与光催化性能的关系进行了探讨。结果表明:复合材料由片状石墨烯和棒状硫化锌组成,有序介孔硫化锌纳米棒均匀地分布在石墨烯表面;氧化石墨烯含量的增加有利于硫化锌纳米棒的均匀分布,微波加热功率的增加和微波加热时间的延长有利于促进硫化锌纳米棒的形成;当微波加热时间为60min,微波加热功率为640 W,氧化石墨烯质量分数为10%时,复合材料的光催化性能最佳。 The composite of ordered mesoporous ZnS nanorods loading on graphene was prepared by microwave-assisted heating.The microscopic morphology and phase composition of the composite were studied;the effect of graphene oxide content(0-15 wt%)and microwave heating power(320-800 W)and time(0-80 min)on microscopic morphology and photocatalytic performance was analyzed;the formation mechanism of the composite,and the relation between micromorphology and photocatalytic performance were discussed.The results show that the composite consisted of flake graphene and rodlike ZnS,and ordered mesoporus ZnS nanorods distributed on the surface of graphene evenly.The increase of graphene oxide content was favorable for dispersion of ZnS nanorods.The formation of ZnS nanorods was promoted with the increase of microwave heating power and time.The photocatalytic performance of the composite was the best when the microwave heating time was 60 min,microwave heating power was 640 W,and the content of graphene oxide was 10 wt%.
作者 曾斌 刘万锋 曾武军 ZENG Bin;LIU Wanfeng;ZENG Wujun(College of Mechanical Engineering,Hunan University of Arts and Science,Changde 415000,China;Hunan Collaborative Innovation Center for Construction and Development of Dongting Lake Ecological Economic Zone,Changde 415000,China)
出处 《机械工程材料》 CAS CSCD 北大核心 2018年第9期41-46,共6页 Materials For Mechanical Engineering
基金 国家自然科学基金资助项目(51272073) 湖南省自然科学基金资助项目(2017JJ2191)
关键词 石墨烯 有序介孔 纳米棒 光催化性能 graphene ordered mesoporous nanorod photocatalytic property
  • 相关文献

参考文献1

二级参考文献30

  • 1范冬梅,冯守爱,朱珍平.水溶液中组装碳纳米管/硫化锌纳米晶复合膜[J].新型炭材料,2006,21(4):360-364. 被引量:5
  • 2魏飞,张强,骞伟中,徐光辉,项荣,温倩,王垚,罗国华.碳纳米管阵列研究进展[J].新型炭材料,2007,22(3):271-282. 被引量:18
  • 3Ravindran S, Chaudhary S, Colburn B, et al. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications[J]. Nano Lett, 2003,3 (4) : 447- 453.
  • 4Chaudhary S, Kim J H, Singh K V, et al. Fluorescence microscopy visualization of single-walled carbon nanotubes using semiconductor nanocrystals [J]. Nano Lett, 2004,4 ( 12 ) : 2415-2419.
  • 5Kuznetsova A, Popova I, Yates J T, et al. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies [J]. J Am Chem Soc, 2001,123(43 ) : 10699-10704.
  • 6Sun Y, Wilson S R, Schuster D I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents [J]. J Am Chem Soc, 2001,123(22) : 5348-5349.
  • 7Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis[J]. Appl Catal A-Gen, 2003,253(2) : 337-358.
  • 8Bredol M, Merikhi J. ZnS precipitation: morphology control[J]. J Mater Sci, 1998,33(2):471-476.
  • 9Tang W, Cameron D C. Electroluminescent zinc sulphide devices produced by sol-gel processing[J]. Thin Solid Films, 1996,280(1-2) : 221-226.
  • 10Prevenslik T V. Acoustoluminescence and sonoluminescence [J]. J Lumines, 2000.87: 1210-1212.

共引文献6

同被引文献28

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部