期刊文献+

基于支持向量机的车辆制动距离研究

Research on vehicle braking distance based on support vector machine
下载PDF
导出
摘要 车辆的制动距离对汽车的主动安全性尤为重要,以制动时的初始速度和路面附着系数作为影响制动距离的主要因素,在TruckSim中搭建了某款客车的模型后进行制动仿真实验,获得了176组在不同的路面附着系数和不同制动初始速度下的制动距离,在MATLAB中基于支持向量机进行分析,利用其中的140组数据组成训练集对模型进行训练,用剩余的36组数据组成测试集进行交叉验证,结果显示预测的相对误差在8.3×10^(-5)以内,拟合优度判定系数在0.99978以上,表明预测精度较高。因此,基于支持向量机可以对车辆的制动距离进行精确预测。 The braking distance of the vehicle is very important to the active safety of the car. The initial speed of braking and the adhesion coefficient of the road are the main factors that affect the braking distance.A model of a passenger car was built in TruckSim, the braking simulation experiment was carried out. The braking distance of 176 groups under different adhesion coefficient and different initial speed of brake was obtained. In MATLAB, based on support vector machine (SVM), the training set of 140 groups of data is used to train the model, and the remaining 36 sets of data are used to cross validation. The results show that the relative error of the prediction is less than 8.3×10-5, the goodness of fitting coefficient is more than 0.99978, which indicates that the prediction accuracy is higher. Therefore, the braking distance of vehicles can be accurately predicted based on support vector machine.
作者 张洋森 Zhang Yangsen(Chang'an University auto college,Shaanxi Xi'an 710000)
出处 《汽车实用技术》 2018年第19期160-163,共4页 Automobile Applied Technology
关键词 制动距离 支持向量机 预测 Braking distance Support Vector Machine Prediction
  • 相关文献

参考文献3

二级参考文献32

  • 1李朝将,凡银生,李强.基于GRNN的电火花线切割加工工艺预测[J].华中科技大学学报(自然科学版),2012,40(S2):1-4. 被引量:6
  • 2魏伟.列车空气制动系统仿真的有效性[J].中国铁道科学,2006,27(5):104-109. 被引量:47
  • 3卢宁,付永领,孙新学.单神经元在液压系统中的应用与电液联合仿真[J].系统仿真学报,2006,18(11):3180-3182. 被引量:20
  • 4Dailey D,Maclean S,Cathey F,et al.Transit vehicle arrival prediction:Algorithm and large-scale implementation[J].Journal of the Transportation Research Board,2001,1771,46-51.
  • 5Shalaby A,Farhan A.Bus Travel Time Prediction Model for Dynamic Operations Control and Passenger Information Systems,CD-ROM,The 82nd Annual Meeting of the Transportation Research Board,Washington,DC.2003.
  • 6Park D,Rilett L R.Forecasting freeway link travel times with a multilayer feedforward neural network[J].Computer-Aided Civil and Infrastructure Engineering,1999,14(5):357-367.
  • 7Ding Y,Chien S.The Prediction of Bus Arrival Times with Link-Based Artificial Neural Networks[C]//Proceedings of the International Conference on Computational Intelligence & Neurosciences (CI&N)-Intelligent Transportation Systems,Atlantic City,New Jersey,2000,730-3.
  • 8Chien I-Jy,Ding Y,Wei C.Dynamic bus arrival time prediction with artificial neural networks[J].Journal of Transportation Engineering,ASCE,2002,128(5):429-38.
  • 9Chen M,Liu X B,Xia J X,et al.A dynamic bus-arrival time prediction model based on APC data[J].Computer-Aided Civil and Infrastructure Engineering,2004,19:364-376.
  • 10Lawrence S,Giles C L,Tsoi A -C.Lessons in Neural Network Training:Overfitting May Be Harder Than Expected[C]//Proceedings of the Fourteenth National Conference on Artificial Intelligence,Mento Park,CA:AAAl Press.1997,AAAl-97,540-545.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部