期刊文献+

Spatial Autocorrelation Analysis of Genetic Structure of Zelkova schneideriana in Mailing Town,Guangxi

Spatial Autocorrelation Analysis of Genetic Structure of Zelkova schneideriana in Mailing Town,Guangxi
下载PDF
导出
摘要 We analyzed the fine-scale spatial genetic structure of the individuals of Zelkova schneideriana , which were classified by age using the spatial autocorrelation method, to quantify spatial patterns of genetic variation within the population and to explore potential mechanisms that determine genetic variation in population. The spatial autocorrelation coefficient ( r ) at 13 distance classes was determined on the basis of both geographical distance and genetic distance matrix which was derived from co-dominant SSR data using GenAlEx software. The results showed that all the individuals of Z. schneideriana exhibited significantly positive spatial genetic structure at distance less than 40 m (the X -intercept was 53.568), indicating that the average length of the smallest genetic patch for the same genotype clustering of the Z. schneideriana Mailing population was about 50 m. Limited seed dispersal is the main factor that leads to the spatial genetic variation within populations. The individuals in age Class II showed significantly positive spatial genetic structure at distance less than 30 m (the X -intercept was 47.882), while the individuals in age Class I and age Class III showed no significant spatial genetic structure in any of the spatial distance classes. Z. schneideriana is a long-lived perennial plant; the self-thinning resulted from the cohort competition between individuals in the growing process may lead to this certain spatial structure in age Class III of Z. schneideriana population. We analyzed the fine-scale spatial genetic structure of the individuals of Zelkova schneideriana , which were classified by age using the spatial autocorrelation method, to quantify spatial patterns of genetic variation within the population and to explore potential mechanisms that determine genetic variation in population. The spatial autocorrelation coefficient ( r ) at 13 distance classes was determined on the basis of both geographical distance and genetic distance matrix which was derived from co-dominant SSR data using GenAlEx software. The results showed that all the individuals of Z. schneideriana exhibited significantly positive spatial genetic structure at distance less than 40 m (the X -intercept was 53.568), indicating that the average length of the smallest genetic patch for the same genotype clustering of the Z. schneideriana Mailing population was about 50 m. Limited seed dispersal is the main factor that leads to the spatial genetic variation within populations. The individuals in age Class II showed significantly positive spatial genetic structure at distance less than 30 m (the X -intercept was 47.882), while the individuals in age Class I and age Class III showed no significant spatial genetic structure in any of the spatial distance classes. Z. schneideriana is a long-lived perennial plant; the self-thinning resulted from the cohort competition between individuals in the growing process may lead to this certain spatial structure in age Class III of Z. schneideriana population.
出处 《Agricultural Biotechnology》 CAS 2018年第5期176-179,共4页 农业生物技术(英文版)
基金 Supported by the Scientific Research and Technological Development Project of Guangxi(1598025-42) the Guangxi Youth Fund Project(2013GXNSFBA019093) the National Forestry Public Welfare Industry Research Project(200904011) the Open Project for Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation(15-B-03-01)
关键词 Zelkova schneideriana Spatial autocorrelation analysis Spatial genetic structure SSR Zelkova schneideriana Spatial autocorrelation analysis Spatial genetic structure SSR
  • 相关文献

参考文献6

二级参考文献42

共引文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部