摘要
通过采用循环交叉轧制(每轧一次旋转90°,4次叫一个循环)的方式,研究其对ZK60镁合金棒材组织和性能的影响。采用金相显微镜(OM),X射线衍射(XRD),电子扫描电镜(SEM),透射电镜(TEM),显微硬度仪,MTS801立式实验机研究了循环轧制后的组织、析出相、断口、织构、硬度和拉伸性能。结果表明:未变形的ZK60镁合金在温度降低的同时经过循环交叉轧制后晶粒从132Ixm细化到1.42μm,硬度提高了50%,屈服强度提高了135%,抗拉强度提高了45%,延伸率经过3道次轧制后从9%降到5.3%,4道次回升到7.5%,5到7次略微下降,8次上升到8.98%,9道次又下降了0.28%;在轧制过程中,析出相的数量随轧制道次的增加而增加,且弥散分布于晶粒内部和晶界,大幅提高了材料的力学性能;通过对轧制过程中织构的分析可得,4和8道次的织构强度相对较弱,与4和8道次延伸率的上升相协调,所以很好地证明了通过采用循环交叉轧制的方式能够显著提高了ZK60镁合金的力学性能,增加材料的组织均匀性和等轴性。
The effect of circle cross rolling (rotating 90°after a pass, 4 passes is a circle) on microstructure and properties of ZK60 magnesium alloy were investigated. Optical microscope ( OM ) , X-ray diffraction ( XRD ) , scanning electron microscopy (SEM) , transmission electron microscopy (TEM) , micro hardness tester and MTSS01 were used to research microstructure, precip- itates, fracture, texture, hardness and tensile property. The results showed that the grain size was reduced from 132 μm to 1.42 p,m, the hardness increased by 50% , the yield strength increased by 135% , the ultimate tensile strength increased by 45% , the e- longation decreased from 9% to 5.3% after 3 passes, it increased to 7.5% and 8.98% respectively after 4 and 8 passes, and de- creased slightly after 5 to 7 passes and 9 passes. The precipitates increased with the rolling passes, the texture intensity of 4 and 8 passes was relatively weakened, which proved that using cyclic cross roiling could improve the mechanical properties of ZK60 magne- sium alloy.
作者
吴泽丽
梁益龙
孙皓
秦少杰
张世伟
WuZeli;Liang Yilong;Sun Hao;Qin Shaojie;Zhang Shiwei(Key Laboratory of Material Structure and Strength of Guizhou Province,National Local Co-Construction Engineering Laboratory for High Performance Metal Structure Material and Manufacturing Technology,College of Materials and Metallurgy,University of Guizhou,Guiyang 550025,China)
出处
《稀有金属》
EI
CAS
CSCD
北大核心
2018年第9期909-917,共9页
Chinese Journal of Rare Metals
基金
国家自然科学基金项目(51461006)
贵州省基础应用重大应用研究项目(黔科合重大专项字[2014]6013)资助
关键词
循环交叉轧制
晶粒
硬度
屈服强度
抗拉强度
延伸率
circle cross rolling
grain size
hardness
ultimate tensile strength
yield strength
elongation