期刊文献+

仿射利率模型下的最优再保险-投资策略 被引量:1

Optimal Reinsurance and Investment Strategy under Affine Interest Rate Model
原文传递
导出
摘要 研究仿射利率模型下的最优投资与再保险策略问题。保险公司通过购买比例再保险来分担公司风险,并将财富投资于金融市场。金融市场包括一种无风险资产、一种风险资产和一种零息票债券,其中无风险利率是服从仿射利率模型的随机过程,盈余过程遵循带漂移的布朗运动。文章应用动态规划原理得到了指数效用下最优再保险-投资策略的显式解,并给出数值算例分析了市场参数对最优再保险-投资策略的影响。 This paper studies the optimal reinsurance and investment strategy under affine interest rate model.The insurance companies share corporate risks by purchasing proportional reinsurance and investing their wealth into the financial markets.The Financial markets contain a risk-free asset,a risk asset and a zero-coupon bond,in which the interest rate follows affine interest rate modelsand the surplus process follows a Brown motion with drift.By applying the dynamic programming principle,the explicit solution to the optimal reinsurance-investment strategy for exponential utility is obtained,and a numerical example is given to illustrate the influence of market parameters on the optimal reinsuranceinvestment strategy.
作者 元丽霞 常浩 YUAN Li-xia;CHANG Hao(School of Science,Tianjin Polytechnic University,Tianjin 300387,China;College of Management and Economics,Tianjin University,Tianjin 300072,China)
出处 《系统工程》 CSSCI 北大核心 2018年第3期33-40,共8页 Systems Engineering
基金 国家自然科学基金资助项目(71671122) 教育部人文社会科学规划项目(16YJA790004) 中国博士后科学基金资助项目(2016T90203) 天津市高校"中青年骨干创新人才培养计划"项目
关键词 仿射利率模型 再保险-投资 指数效用 随机最优控制 显式解 Affine Interest Rate Model Reinsurance-investment Exponential Utility Stochastic Optimal Control Explicit Solution
  • 相关文献

参考文献6

二级参考文献49

  • 1彭实戈.倒向随机微分方程及其应用[J].数学进展,1997,26(2):97-112. 被引量:72
  • 2Browne,S.,1995.Optimal investment policies for a firm with a random risk process:Exponential utility and minimizing the probability of ruin[J].Mathematics of Operations Research 20 (4),937-958.
  • 3Browne,S.,1997.Survival and growth with liability:Optimal portfolio strategies in continuous time[J].Mathematics of Operations Research 22,468-492.
  • 4Bai,L.,Guo,J.2007.Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint[J].Insurance:Mathematics and Economics (2007),doi:10.1016/j.insmatheco.2007.11.002.
  • 5Gerber,H.U,1979.An Introduction to Mathematical Risk Theory[M].In:Huebner Foundation Monograph,vol.8.
  • 6Krylov R.1980.CntroUed Diffusion Process[M].Spring-Verlag,New York.
  • 7Promislow,D.S.,Young,V.R.,2005.Minimizing the probability of ruin when claims follow Brownian motion with drift[J].North American Actuarial Journal.9(3),109-128.
  • 8杨招军.最优投资与衍生资产定价[M].长沙:湖南大学出版社,2008.
  • 9S BROWNE. Optimal investment policies for a firm with a ran-dom risk process:Exponential utility and minimizing the proba- bility of ruin [J]. Mathematics Methods Operator Research 1995,20(4) :937-957.
  • 10L BAI, J GUO. Optimal proportional reinsurance and invest- ment with multiple risky assets and no-shorting constraint[J]. Insurance : Mathematics and Economics : 2008,42,968-975.

共引文献50

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部