期刊文献+

Inhibition of neurite outgrowth using commercial myelin associated glycoprotein-Fc in neuro-2a cells 被引量:2

Inhibition of neurite outgrowth using commercial myelin associated glycoprotein-Fc in neuro-2a cells
下载PDF
导出
摘要 Myelin-associated glycoprotein(MAG) inhibits the growth of neurites from nerve cells. Extraction and purification of MAG require complex operations; therefore, we attempted to determine whether commercially available MAG-Fc can replace endogenous MAG for research purposes. Immunofluorescence using specific antibodies against MAG, Nogo receptor(NgR) and paired immunoglobulin-like receptor B(PirB) was used to determine whether MAG-Fc can be endocytosed by neuro-2a cells. In addition, neurite outgrowth of neuro-2a cells treated with different doses of MAG-Fc was evaluated. Enzyme linked immunosorbent assays were used to measure RhoA activity. Western blot assays were conducted to assess Rho-associated protein kinase(ROCK) phosphorylation. Neuro-2a cells expressed NgR and PirB, and MAG-Fc could be endocytosed by binding to NgR and PirB. This activated intracellular signaling pathways to increase RhoA activity and ROCK phosphorylation, ultimately inhibiting neurite outgrowth. These findings not only verify that MAG-Fc can inhibit the growth of neural neurites by activating RhoA signaling pathways, similarly to endogenous MAG, but also clearly demonstrate that commercial MAG-Fc is suitable for experimental studies of neurite outgrowth. Myelin-associated glycoprotein(MAG) inhibits the growth of neurites from nerve cells. Extraction and purification of MAG require complex operations; therefore, we attempted to determine whether commercially available MAG-Fc can replace endogenous MAG for research purposes. Immunofluorescence using specific antibodies against MAG, Nogo receptor(NgR) and paired immunoglobulin-like receptor B(PirB) was used to determine whether MAG-Fc can be endocytosed by neuro-2a cells. In addition, neurite outgrowth of neuro-2a cells treated with different doses of MAG-Fc was evaluated. Enzyme linked immunosorbent assays were used to measure RhoA activity. Western blot assays were conducted to assess Rho-associated protein kinase(ROCK) phosphorylation. Neuro-2a cells expressed NgR and PirB, and MAG-Fc could be endocytosed by binding to NgR and PirB. This activated intracellular signaling pathways to increase RhoA activity and ROCK phosphorylation, ultimately inhibiting neurite outgrowth. These findings not only verify that MAG-Fc can inhibit the growth of neural neurites by activating RhoA signaling pathways, similarly to endogenous MAG, but also clearly demonstrate that commercial MAG-Fc is suitable for experimental studies of neurite outgrowth.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第11期1893-1899,共7页 中国神经再生研究(英文版)
基金 supported by the National Natural Science Foundation of China,No.81171178
关键词 nerve regeneration myelin growth inhibitors myelin-associated glycoprotein MAG-Fc cell culture receptors for myelin-associatedglycoprotein neuro-2a cell line RhoA/ROCK signaling pathways neurite outgrowth neural regeneration nerve regeneration myelin growth inhibitors myelin-associated glycoprotein MAG-Fc cell culture receptors for myelin-associatedglycoprotein neuro-2a cell line RhoA/ROCK signaling pathways neurite outgrowth neural regeneration
  • 相关文献

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部