期刊文献+

碳量子点掺杂的蠕虫状胶束 被引量:4

Carbon quantum dot-doped worm-like micelles
下载PDF
导出
摘要 以富勒烯生产过程中的副产物炭灰为原料,利用酸回流法制备了表面含有羧基的碳量子点(CQDs)。将所制备的CQDs代替传统有机酸,发现其与十四烷基二甲基氧化胺(C_(14)DMAO)在水溶液中能形成蠕虫状胶束。考察了CQDs质量浓度、pH等对蠕虫状胶束流变性质的影响。结果表明,CQDs质量浓度的增加和溶液pH值的降低均有利于蠕虫状胶束的形成。利用低温透射电镜可以原位地观察到蠕虫状胶束和CQDs的存在。CQDs外围-COOH解离出的H^+可以使C_(14)DMAO质子化为C_(14)DMAOH^+,而C_(14)DMAOH^+与C_(14)DMAO之间形成的氢键是蠕虫状胶束形成的主要驱动力。以上结果表明,CQDs可以有效地诱导C_(14)DMAO形成蠕虫状胶束。 Carbon quantum dots (CQDs) with carboxyl groups were prepared by acid reflux method and using fullerene carbon soot as raw material. CQDs can form worm -like micelles with tetradecyldimethylamine oxide (C14DMAO) in aqueous solution when the CQDs replaced the traditional organic acid. The effects of CQDs mass concentration and pH on the rheological properties of worm - like micelles were investigated. It is found that both a higher mass concentration of CQDs and a lower pH will facilitate the formation of worm - like micelles. The worm - like micelles and CQDs can be observed in situ by cryo - TEM. The dissociation of H+ from CQDs Could protonate C14DMAO into C14 DMAOH+ The hydrogen bond formed between C14DMAOH + and C14DMAO is the main driving force for the formation of worm - like micelles. The results above show that CQDs can effectively induce C14DMAO to form worm- like micelles.
作者 孙晓峰 李洪光 SUN Xiao-feng;LI Hong-guang(Laboratory of Clean Energy Chemistry and Materials,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《日用化学工业》 CAS CSCD 北大核心 2018年第9期483-488,共6页 China Surfactant Detergent & Cosmetics
基金 国家自然科学基金资助项目(61474124)
关键词 两性表面活性剂 碳量子点 PH响应 蠕虫状胶束 zwitterionic surfactant carbon quantum dot pH - responsive worm - like micelle
  • 相关文献

参考文献3

二级参考文献47

  • 1Kaler, E. W.; Murthy, A. K.; Rodriguez, B. E.; Zasadzinski, J. A. N. Science 1989, 245, 1371. doi: 10.1126/science.2781283.
  • 2Morigaki, K.; Dallavalle, S.; Walde, P.; Colonna, S.; Luisi, P. L. J. Am. Chem. Soc 1997, 119, 292. doi: 10.1021/ja961728b.
  • 3Bergstr?m, M. P.; Pedersen, J. S. Langmuir 1999, 15, 2250. doi: 10.1021/la981495x.
  • 4Horbaschek, K. H.; Hoffmann, H.; Hao, J. J. Phys. Chem. B 2000, 104, 2781. doi: 10.1021/jp993128f.
  • 5Campbell, S. E.; Zhang, Z.; Friberg, S. E.; Patel, R. Langmuir 1998, 14, 590. doi: 10.1021/la9707742.
  • 6Horbaschek, K.; Hoffmann, H.; Thunig, C. J. Colloid Interface Sci. 1998, 206, 439. doi: 10.1006/jcis.1998.5690.
  • 7Hao, J.; Li, H.; Liu, W.; Hirsch, A. Chem. Commun. 2004, No. 5, 602.
  • 8Song, S.; Feng, L.; Song, A.; Hao, J. J. Phys. Chem. B 2012, 116, 12850. doi: 10.1021/jp3066025.
  • 9Song, S.; Zheng, Q.; Song, A.; Hao, J. Langmuir 2012, 28, 219.
  • 10Jiang, Y.; Geng, T.; Li, Q.; Li, G.; Ju, H. Colloids Surf. A 2014, 462, 27. doi: 10.1016/j.colsurfa.2014.08.020.

共引文献11

同被引文献35

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部