期刊文献+

Effect of Sintering Temperature and Heating Rate on Crystallite Size,Densification Behaviour and Mechanical Properties of Al-MWCNT Nanocomposite Consolidated via Spark Plasma Sintering

Effect of Sintering Temperature and Heating Rate on Crystallite Size,Densification Behaviour and Mechanical Properties of Al-MWCNT Nanocomposite Consolidated via Spark Plasma Sintering
原文传递
导出
摘要 Powder mixture of ball-milled aluminium and functionalized multi-walled carbon nanotubes was compacted via spark plasma sintering (SPS) to study effects of sintering temperature and heating rate. An increase in sintering temperature led to an increase in crystallite size and density, whereas an increase in heating rate exerted the opposite effect. The crystallite size and relative density increased by 85.0% and 14.3%, respectively, upon increasing the sintering temperature from 400 to 600℃, whereas increasing the heating rate from 25 to 100 ℃/min led to respective reduction by 30.0% of crystallite size and 1.8% of relative density. The total punch displacement during SPS for the nanocomposite sintered at 600 ℃ (1.96 mm) was much higher than that of the sample sintered at 400 ℃ (1.02 mm) confirming positive impact of high sintering temperature on densification behaviour. The maximum improvement in mechanical properties was exhibited by the nanocomposite sintered at 600 ℃ at a heating rate of 50℃/min displaying microhardness of 81 4- 3.6 VHN and elastic modulus of 89 4- 5.3 GPa. The nanocomposites consolidated at 400 ℃ and 100 ℃/min, in spite of having relatively smaller crystallite size, exhibited poor mechanical properties indicating the detrimental effect of porosity on the mechanical properties. Powder mixture of ball-milled aluminium and functionalized multi-walled carbon nanotubes was compacted via spark plasma sintering (SPS) to study effects of sintering temperature and heating rate. An increase in sintering temperature led to an increase in crystallite size and density, whereas an increase in heating rate exerted the opposite effect. The crystallite size and relative density increased by 85.0% and 14.3%, respectively, upon increasing the sintering temperature from 400 to 600℃, whereas increasing the heating rate from 25 to 100 ℃/min led to respective reduction by 30.0% of crystallite size and 1.8% of relative density. The total punch displacement during SPS for the nanocomposite sintered at 600 ℃ (1.96 mm) was much higher than that of the sample sintered at 400 ℃ (1.02 mm) confirming positive impact of high sintering temperature on densification behaviour. The maximum improvement in mechanical properties was exhibited by the nanocomposite sintered at 600 ℃ at a heating rate of 50℃/min displaying microhardness of 81 4- 3.6 VHN and elastic modulus of 89 4- 5.3 GPa. The nanocomposites consolidated at 400 ℃ and 100 ℃/min, in spite of having relatively smaller crystallite size, exhibited poor mechanical properties indicating the detrimental effect of porosity on the mechanical properties.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第10期1019-1030,共12页 金属学报(英文版)
基金 supported financially by the‘‘SERC Funding’’ from Department of Science and Technology,Government of India(No.SERC/ET-0388/2012)
关键词 Al nanocomposite Multi-walled carbon nanotubes Ball milling Spark plasma sintering Densification behaviour Mechanical properties Al nanocomposite Multi-walled carbon nanotubes Ball milling Spark plasma sintering Densification behaviour Mechanical properties
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部