摘要
Perovskite BaTiO3 (BTO) nanocrystals with a size of 150-200 nm have successfully been synthesized via a facile hydrothermal method by employing titanate nanowires as synthetic precursor. Tetragonality and spontaneous ferroelectric polarization of BTO nanocrystals have been determined by X-ray diffraction and transmission electron microscopy investigations. BTO nanocrystals loaded with Pt nanoparticles in a size of 2-5 nm have been explored as a catalyst towards CO oxidation to CO2. It is interesting to find that CO catalytic conversion rate over Pt-BTO nanocrystals gradually decreased and further increased near 100 ℃ when the catalytic temperature keeps increasing, whereas the conversion behavior in oxides is expected to be enhanced upon the catalytic temperature grows. Using differential scanning calorimetry and first-principle calculations, the observed catalytic behavior has been discussed on the basis of the ferroelectric polarization effect and the ferroelectric-paraelectric transition of BTO nanocrystals with a Curie temperature of 110 ℃. Below Curie temperature, CO catalytic oxidation could be significantly tailored by ferroelectric polarization of BTO nanocrystals via a promoted dissociation of O2 molecules. The findings suggest that a ferroelectric polarization in perovskite oxides could be an alternative way to modify the CO catalytic oxidation.
Perovskite BaTiO3 (BTO) nanocrystals with a size of 150-200 nm have successfully been synthesized via a facile hydrothermal method by employing titanate nanowires as synthetic precursor. Tetragonality and spontaneous ferroelectric polarization of BTO nanocrystals have been determined by X-ray diffraction and transmission electron microscopy investigations. BTO nanocrystals loaded with Pt nanoparticles in a size of 2-5 nm have been explored as a catalyst towards CO oxidation to CO2. It is interesting to find that CO catalytic conversion rate over Pt-BTO nanocrystals gradually decreased and further increased near 100 ℃ when the catalytic temperature keeps increasing, whereas the conversion behavior in oxides is expected to be enhanced upon the catalytic temperature grows. Using differential scanning calorimetry and first-principle calculations, the observed catalytic behavior has been discussed on the basis of the ferroelectric polarization effect and the ferroelectric-paraelectric transition of BTO nanocrystals with a Curie temperature of 110 ℃. Below Curie temperature, CO catalytic oxidation could be significantly tailored by ferroelectric polarization of BTO nanocrystals via a promoted dissociation of O2 molecules. The findings suggest that a ferroelectric polarization in perovskite oxides could be an alternative way to modify the CO catalytic oxidation.
基金
financially supported by the National Natural Science Foundation of China(Nos.51602286,51472218,51302247,51232006,and 21102212)
the Science Foundation of Zhejiang Sci-Tech University(No.15022084-Y)
the Natural Science Foundation of Zhejiang province(No.LY18E010004)