期刊文献+

CO Catalytic Oxidation of Pt-Loaded Perovskite BaTiO_3 Near Ferroelectric-Phase Transition Temperature 被引量:1

CO Catalytic Oxidation of Pt-Loaded Perovskite BaTiO_3 Near Ferroelectric-Phase Transition Temperature
原文传递
导出
摘要 Perovskite BaTiO3 (BTO) nanocrystals with a size of 150-200 nm have successfully been synthesized via a facile hydrothermal method by employing titanate nanowires as synthetic precursor. Tetragonality and spontaneous ferroelectric polarization of BTO nanocrystals have been determined by X-ray diffraction and transmission electron microscopy investigations. BTO nanocrystals loaded with Pt nanoparticles in a size of 2-5 nm have been explored as a catalyst towards CO oxidation to CO2. It is interesting to find that CO catalytic conversion rate over Pt-BTO nanocrystals gradually decreased and further increased near 100 ℃ when the catalytic temperature keeps increasing, whereas the conversion behavior in oxides is expected to be enhanced upon the catalytic temperature grows. Using differential scanning calorimetry and first-principle calculations, the observed catalytic behavior has been discussed on the basis of the ferroelectric polarization effect and the ferroelectric-paraelectric transition of BTO nanocrystals with a Curie temperature of 110 ℃. Below Curie temperature, CO catalytic oxidation could be significantly tailored by ferroelectric polarization of BTO nanocrystals via a promoted dissociation of O2 molecules. The findings suggest that a ferroelectric polarization in perovskite oxides could be an alternative way to modify the CO catalytic oxidation. Perovskite BaTiO3 (BTO) nanocrystals with a size of 150-200 nm have successfully been synthesized via a facile hydrothermal method by employing titanate nanowires as synthetic precursor. Tetragonality and spontaneous ferroelectric polarization of BTO nanocrystals have been determined by X-ray diffraction and transmission electron microscopy investigations. BTO nanocrystals loaded with Pt nanoparticles in a size of 2-5 nm have been explored as a catalyst towards CO oxidation to CO2. It is interesting to find that CO catalytic conversion rate over Pt-BTO nanocrystals gradually decreased and further increased near 100 ℃ when the catalytic temperature keeps increasing, whereas the conversion behavior in oxides is expected to be enhanced upon the catalytic temperature grows. Using differential scanning calorimetry and first-principle calculations, the observed catalytic behavior has been discussed on the basis of the ferroelectric polarization effect and the ferroelectric-paraelectric transition of BTO nanocrystals with a Curie temperature of 110 ℃. Below Curie temperature, CO catalytic oxidation could be significantly tailored by ferroelectric polarization of BTO nanocrystals via a promoted dissociation of O2 molecules. The findings suggest that a ferroelectric polarization in perovskite oxides could be an alternative way to modify the CO catalytic oxidation.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第10期1031-1037,共7页 金属学报(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.51602286,51472218,51302247,51232006,and 21102212) the Science Foundation of Zhejiang Sci-Tech University(No.15022084-Y) the Natural Science Foundation of Zhejiang province(No.LY18E010004)
关键词 PEROVSKITE Ferroelectric materials BATIO3 PT CATALYSIS Perovskite Ferroelectric materials BaTiO3 Pt Catalysis
  • 相关文献

同被引文献33

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部