期刊文献+

低分辨率图像中的瞳孔中心精确定位方法 被引量:3

Accurate human pupil center localization in low-resolution images
下载PDF
导出
摘要 针对低分辨率图像中瞳孔边缘模糊、瞳孔受上下眼睑遮挡等问题,提出了一种由粗及精的瞳孔中心精确定位方法,该方法主要使用瞳孔的几何特征和人眼的方向信息进行定位。首先基于显式形状回归方法提取人脸特征点,根据人眼特征点粗定位瞳孔中心;其次根据半径搜索范围,采用射线法提取准确的瞳孔边缘,通过改进的随机抽样一致性算法剔除伪边界点,基于最小二乘法精确定位瞳孔中心。最后本文算法在自制人脸库和公开人脸库BioID上进行了验证,瞳孔中心精确定位准确率为82.2%。结果表明该算法能够克服头部姿势变化和眼睑遮挡等问题,与其他算法相比表现出良好的鲁棒性和准确性。 Aiming at the problem of occlusion by eyelids and the blur edges of pupil in low-resolusion images, a coarse to fine algorithm for accurate pupil center localization is proposed. The proposed method uses the geometrical information of the iris. Firstly, the explicit shape regression method is used to locate the facial landmarks and calculate the rough pupil center. Secondly, the iris edge is detected by starburst with eye direction and the precise pupil center is estimated using circle fitting. The performance of the proposed method is evaluated both in selbmade database and in public database BioID and achieves an accuracy of 82.2~. Experimental results show great improvement compared to the state of the arts.
作者 闫蓓 吴梦瑶 Yan Bei;Wu Mengyao(School of Automation Science and Electrical Engineering,Beihang University,Beijing 1001!)1,China)
出处 《电子测量技术》 2018年第16期74-78,共5页 Electronic Measurement Technology
关键词 瞳孔检测 人脸特征点 射线法 随机抽样一致 圆拟合 pupil detection facial landmarks starburst random sample consensus circle fitting
  • 相关文献

参考文献3

二级参考文献40

  • 1林小竹,谷莹莹,赵国庆.煤泥浮选泡沫图像分割与特征提取[J].煤炭学报,2007,32(3):304-308. 被引量:28
  • 2于莉娜,胡正平,练秋生.基于改进随机Hough变换的混合圆/椭圆快速检测方法[J].电子测量与仪器学报,2004,18(2):92-97. 被引量:18
  • 3冯建强,刘文波,于盛林.基于灰度积分投影的人眼定位[J].计算机仿真,2005,22(4):75-76. 被引量:49
  • 4张杰,杨晓飞,赵瑞莲.基于Hough变换圆检测的人眼精确定位方法[J].计算机工程与应用,2005,41(27):43-44. 被引量:36
  • 5段锦.人脸自动机器识别[M].北京:科学出版社,2009:88-103.
  • 6Kaartinen J, Hatonen J. Machine-vision-based Control of Zinc Flotation--A Case Study[J]. Control Engineering Practice, 2006, 14(12): 1455-1466.
  • 7Vincent L, Solille P. Watershed in Digital Spaces: An Efficient Algorithm Based Immersion Simulations[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.
  • 8Sadr-Kazemi N, Cilliers J. An Image Processing Algorithm for Measurement of Flotation Froth Bubble Size and Shape Distributions[J]. Minerals Engineering, 1997, 10(10): 1075-1083.
  • 9Moolman D W, Aldrich C, van Deventer J S J. The Interpretation of Flotation Froth Surfaces by Using Digital Image Analysis and Neural Networks[J]. Chemical Engineering Science, 1995, 50(22): 3501-3513.
  • 10Wang Weixing, Stephansson O. A Robust Bubble Delineation Algorithm for Froth Images[C]//Proc. of the 2nd International Conference on Intelligent Processing and Manufacturing of Materials. Hawaii, USA: [s. n.], 1999: 471-476.

共引文献36

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部