期刊文献+

桉木粉在低共熔溶剂中制备纳米结晶纤维素 被引量:7

Preparation of Cellulose Nanocrystals from Eucalyptus Powder by Deep Eutectic Solvent
下载PDF
导出
摘要 采用氯化胆碱-丙三醇-聚乙二醇200混合溶剂液化桉木粉的方法分离纤维素,再通过氯化胆碱-草酸二水合物低共熔溶剂(DES)在不同的条件下处理提取的纤维素制备纳米结晶纤维素(CNC)。探讨了固液比、温度以及时间对CNC得率的影响,用扫描电镜、透射电镜、红外光谱、X-射线衍射、Zeta电位、紫外可见光分析对制备的CNC进行了表征。结果表明,在固液比1∶100,温度100℃,反应时间4h的条件下,CNC的得率最高,可以达到90.06%;制备的CNC呈棒状结构,直径为3~13nm,长度为100~300nm;结晶度相比于原料纤维素略有降低,纤维素结构没有发生大的变化,仍然呈纤维素Ⅰ型结晶。 Cellulose was separated from eucalyptus wood powder by partial liquefaction using choline chloride-PEG200-glycerin solvent as the liquefying reagent. The separated cellulose was then treated with choline chloride-oxalic acid dihydrate eutectic solvent under different conditions to prepare cellulose nanocrystal. The effect of different reaction conditions on the yield of cellulose nanocrystal was discussed. And the cellulose nanocrystals were characterized by scanning electron microscopy,transmission electron microscopy,Fourier transform infrared spectroscopy,X-ray diffraction,Zeta potential and UV—vis spectra. The results showed that the optimal reaction conditions are solid-liquid ratio 1∶ 100 at 100℃ for 4 h,the yield of cellulose nanocrystal can reach 90. 06%. The cellulose nanocrystals were rod-shaped,between 100 and 300 nm long,with a diameter ranging from 3 to 13 nm. The molecular cellulose type I crystalline structure remained intact while the crystallinity decrease slightly during the preparation of cellulose nanocrystals.
作者 白有灿 谌凡更 BAI You-can;CHEN Fan-geng(State Key Laboratory of Pulp and Paper Engineering,South China University of Technology,Guangzhou 510640,China)
出处 《造纸科学与技术》 2018年第4期22-27,共6页 Paper Science & Technology
基金 制浆造纸工程国家重点实验室自主研究项目(项目编号:2015C01)
关键词 低共熔溶剂 纤维素纳米晶体 结晶度 deep eutectic solvent cellulose nanocrystal crystallinity
  • 相关文献

参考文献3

二级参考文献74

  • 1蒋玲玲,陈小泉.纤维素酶解天然棉纤维制备纳米纤维素晶体及其表征[J].化学工程与装备,2008(10):1-4. 被引量:23
  • 2石淑兰,何福望主编.制浆造纸分析与检测[M].北京:中国轻工业出版社,2008.
  • 3Reddy N, Yang Y Q. Biofibers from agricultural byproducts for industrial applications [ J]. Trends in Biotechnology, 2005, 23(1): 22 -27.
  • 4Siqueira G, Bras J, Dufresne A. Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals[ J]. BioResources, 2010, 5 (2) : 727 - 740.
  • 5Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls[ J]. Bioresource Technology, 2008, 99(6) : 1 664 - 1 671.
  • 6Jonoobi M, Harun J, Shakeri A, et al. Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast ( Hibiscus cannabinus) pulp and nanofibers [ J ]. BioResources, 2009, 4 ( 2 ) : 626 - 639.
  • 7Teixeira E D M, Correa A C, Manzoli A, et al. Cellulose nanofibers from white and naturally colored cotton fibers [ J]. Cellulose ,2010,17 ( 3 ) :595 - 606.
  • 8Wang B, Sain M, Oksman K. Study of structural morphology of hemp fiber from the micro to the nanoscale [ J]. Appl. Compos. Mater. , 2007, 14(2) : 89- 103.
  • 9EI-Sakhawy M, Hassan M L, Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues [ J]. Carbohydrate Polymers, 2007, 67( 1 ): 1 - 10.
  • 10Hassan M L, Mathew A P, Hassan E A, et al. Nanofibers from bagasse and rice straw: process optimization and properties [ J]. Wood Science and Technology, Published Online:17 September 2010. http: ff dx. doi. org/10. 1007/s00226 -010 - 0373 - z.

共引文献48

同被引文献66

引证文献7

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部