期刊文献+

Inequalities for L_p Mixed Intersection Bodies

Inequalities for L_p Mixed Intersection Bodies
下载PDF
导出
摘要 Haberl and Ludwig defined the notions of L_p intersection bodies. In this paper,we introduce the L_p mixed intersection bodies, and establish some geometric inequalities for L_p mixed intersection bodies. Furthermore, the Busemann-Petty type problem for L_p mixed intersection bodies are shown. Haberl and Ludwig defined the notions of L_p intersection bodies. In this paper,we introduce the L_p mixed intersection bodies, and establish some geometric inequalities for L_p mixed intersection bodies. Furthermore, the Busemann-Petty type problem for L_p mixed intersection bodies are shown.
出处 《Chinese Quarterly Journal of Mathematics》 2018年第2期156-165,共10页 数学季刊(英文版)
基金 Supported by the Natural Science Foundation of Hunan Province(2017JJ3085+16C0635) Supported by the China Postdoctoral Science Foundation(2016M601644)
关键词 Star body Radial function L_p mixed intersection bodies L_p Cosine transform Star body Radial function Lp mixed intersection bodies Lp Cosine transform
  • 相关文献

参考文献4

二级参考文献73

  • 1A. Koldobsky.A functional analytic approach to intersection bodies[J]. Geometric and Functional Analysis . 2000 (6)
  • 2P. Goodey,E. Lutwak,W. Weil.Functional analytic characterizations of classes of convex bodies[J]. Mathematische Zeitschrift . 1996 (1)
  • 3Lutwak. Advances in Mathematics . 1988
  • 4Goodey P,Lutwak E,Weil W.Functional analytic characterizations of classes of convex bodies. Mathematische Zeitschrift . 1996
  • 5Zhang,G.A positive answer to the Busemann-Petty problem in ?4. Annals of Mathematics . 1999
  • 6Gardner,R. J.A positive answer to the Busemann-Petty problem in three dimensions. Annals of Mathematics . 1994
  • 7Gardner,R. J.,Koldobsky,A.,Schlumprecht,T.An analytic solution to the Busemann-Petty problem on sections of convex bodies. Annals of Mathematics . 1999
  • 8Busemann,H.Volumes in terms of cross-sections. Pacific Journal of Mathematics . 1953
  • 9Campi S.Stability estimates for star bodies in terms of their intersection bodies. Mathematika . 1998
  • 10Campi S.Convex intersection bodies in three and four dimensions. Mathematika . 1999

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部