期刊文献+

Applications of the Differential Operator to the Class of p-Valent Functions

Applications of the Differential Operator to the Class of p-Valent Functions
下载PDF
导出
摘要 In this paper, we define some new subclasses of strongly close-to-star and strongly close-to-convex p-valent functions defined in the open unit disc by using a differential operator. Some inclusion results, convolution properties are studied. In this paper, we define some new subclasses of strongly close-to-star and strongly close-to-convex p-valent functions defined in the open unit disc by using a differential operator. Some inclusion results, convolution properties are studied.
作者 ZHOU Cong-hui
出处 《Chinese Quarterly Journal of Mathematics》 2018年第2期199-205,共7页 数学季刊(英文版)
关键词 p-valent function Strongly close-to-star function Strongly close-to-convex function Inclusion results p-valent function Strongly close-to-star function Strongly close-to-convex function Inclusion results
  • 相关文献

参考文献1

二级参考文献25

  • 1Reade, M. O.: On close-to-convex univalent functions. Michigan Math. J., 3: 59-62 (1955-56).
  • 2Srivastava, H. M., Owa, S.: Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, Hong Kong, 1982.
  • 3Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H. M.: Close-to-convexity, starlikeness and convexity for certain analytic functions. Appl. Math. Lett., 15, 63-69 (2002).
  • 4Blezu, D., Pascu, N. N.: Integral of univalent functions. Mathematica (Cluj), 46, 5-8 (1981).
  • 5Ruscheweyh, St., Sheil-Small, T.: Hadamard products of schlicht functions and the P61y~Schoenberg conjecture. Comment. Math. Helv., 48, 119-135 (1973).
  • 6Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
  • 7Srivastava, H. M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London, New York, 2012.
  • 8Choi, J., Srivastava, H. M.: Certain families of series associated with the Hurwitz-Lerch zeta function. Appl. Math. Comput., 170, 399-409 (2005).
  • 9Ferreira, C., Lopez, J. L.: Asymptotic expansions of the Hurwitz Lerch zeta function. J. Math. Anal. Appl., 298, 210-224 (2004).
  • 10Garg, M., Jain, K., Srivastava, H. M.: Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions. Integral Transforms Spec. Funct., 17, 803-815 (2006).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部