期刊文献+

Seasonal variation and size distribution of biogenic secondary organic aerosols at urban and continental background sites of China 被引量:6

Seasonal variation and size distribution of biogenic secondary organic aerosols at urban and continental background sites of China
原文传递
导出
摘要 Size-resolved biogenic secondary organic aerosols (BSOA) derived from isoprene and monoterpene photooxidation in Qinghai Lake, Tibetan Plateau (a continental background site) and five cities of China were measured using gas chromatography/mass spectrometry (GC/MS). Concentrations of the determined BSOA are higher in the cities than in the background and are also higher in summer than in winter. Moreover, strong positive correlations (R^2 = 0.44-0.90) between BSOA and sulfate were found at the six sites, suggesting that anthropogenic pollution (i.e., sulfate) could enhance SOA formation, because sulfate provides a surface favorable for acid-catalyzed formation of BSOA. Size distribution measurements showed that most of the determined SOA tracers are enriched in the fine mode (〈3.3 μm) except for cis-pinic and cis-pinonic acids, both presented a comparable mass in the fine and coarse (〉3.3 μm) modes, respectively. Mass ratio of oxidation products derived from isoprene to those from monoterpene in the five urban regions during summer are much less than those in Qinghai Lake region. In addition, in the five urban regions relative abundances of monoterpene oxidation products to SOA are much higher than those of isoprene. Such phenomena suggest that BSOA derived from monoterpenes are more abundant than those from isoprene in Chinese urban areas. Size-resolved biogenic secondary organic aerosols (BSOA) derived from isoprene and monoterpene photooxidation in Qinghai Lake, Tibetan Plateau (a continental background site) and five cities of China were measured using gas chromatography/mass spectrometry (GC/MS). Concentrations of the determined BSOA are higher in the cities than in the background and are also higher in summer than in winter. Moreover, strong positive correlations (R^2 = 0.44-0.90) between BSOA and sulfate were found at the six sites, suggesting that anthropogenic pollution (i.e., sulfate) could enhance SOA formation, because sulfate provides a surface favorable for acid-catalyzed formation of BSOA. Size distribution measurements showed that most of the determined SOA tracers are enriched in the fine mode (〈3.3 μm) except for cis-pinic and cis-pinonic acids, both presented a comparable mass in the fine and coarse (〉3.3 μm) modes, respectively. Mass ratio of oxidation products derived from isoprene to those from monoterpene in the five urban regions during summer are much less than those in Qinghai Lake region. In addition, in the five urban regions relative abundances of monoterpene oxidation products to SOA are much higher than those of isoprene. Such phenomena suggest that BSOA derived from monoterpenes are more abundant than those from isoprene in Chinese urban areas.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第9期32-44,共13页 环境科学学报(英文版)
基金 supported by the China National Natural Science Fund for Distinguished Young Scholars (No. 41325014) the National Key R&D Plan (Quantitative Relationship and Regulation Principle between Regional Oxidation Capacity of Atmospheric and Air Quality) (No. 2017YFC0210000) the program from National Nature Science Foundation of China (No. 41773117) (No. 41405122, 91543116) the West Light Foundation of Chinese Academy of Sciences
关键词 Biogenic secondary organic aerosols Photochemical oxidation Seasonal and spatial variations Size distribution SULFATE Biogenic secondary organic aerosols Photochemical oxidation Seasonal and spatial variations Size distribution Sulfate
  • 相关文献

同被引文献44

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部