期刊文献+

Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells 被引量:1

Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells
原文传递
导出
摘要 Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.s and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B tung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.s. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM. Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.s and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B tung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.s. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第9期168-178,共11页 环境科学学报(英文版)
基金 supported by the Institut National du Cancer (INCa Convention no. 2010-368) the Hauts-de-France Region (Convention No. 14003399) the French Agency of the Environment and Energy (ADEME Convention no. 1494c008283-84)
关键词 Air pollution particulate matter PM2.5 Ultrafine particles Physico-chemical characterization BIOTRANSFORMATION GENOTOXICITY Air pollution particulate matter PM2.5 Ultrafine particles Physico-chemical characterization Biotransformation Genotoxicity
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部