期刊文献+

基于核K-means与RVM分类回归的Wi-Fi指纹室内定位算法 被引量:1

Wi-Fi Fingerprint Indoor Localization Based on Kernel K-means and RVM Classification Regression
下载PDF
导出
摘要 针对室内定位指纹算法的定位精度以及实时性问题,提出一种基于核K-means和相关向量机的定位算法。该算法首先使用核K-means算法将接收信号强度进行聚类,存入指纹特征数据库,通过RVM回归对指纹数据库进行训练,算出最优拟合位置的数学模型。实验结果表明,该算法于定位实时性以及定位精度优于SVM相关定位算法。 With respect to the problem of location accuracy and real-time performance of fingerprint indoor positioning algorithm. Proposes a location algorithm based on kernel K-means and relevance vector machine. The algorithm first uses the kernel K-means algorithm to cluster Received Signal Strength data and stores it as a fingerprint database. Then the RVM regression algorithm is used to train the fingerprint data in the database. Through the training we can calculate the best fitting position of the mathematical model. Experimental results show that the algorithm is superior to the SVM-related positioning algorithm in real-time performance, superior to the SVM-related positioning algorithm in positioning accuracy.
作者 陈骁 宋安军 CHEN Xiao;SONG An-jun(College of Information Engineering,Shanghai Maritime University,Shanghai 201306)
出处 《现代计算机(中旬刊)》 2018年第9期38-42,共5页 Modern Computer
关键词 Wi-Fi指纹 室内定位 核K-means RVM 聚类 Wi-Fi Fingerprint Indoor Positioning Kernel K-means Clustering
  • 相关文献

参考文献4

二级参考文献14

  • 1瓦普尼克.统计学习理论的本质[M].北京:清华大学出版社,2004.
  • 2WEBB A R.统计模式识别[M].2版.北京:电子工业出版社,2004:15-16.
  • 3SHAWE-TAYLOR J, CRISTIANINI N. Kemel methods for pattern analysis [ M ]. Cambridge : Cambridge University Press,2004.
  • 4MICHAEL E T. Sparse Bayesian learning and the relevance vector machine[ J ]. ,Journal of Machine Learning Research, 2001,1:211 - 244.
  • 5[EB/OL]. http ://stats. ox. ac. uk/pub/pmn.
  • 6[EB/OL]. http ://kdd. ics. edu/summary. data. type. html.
  • 7[1]Vapnik V N. The Nature of Statistical Learning Theory. Springer Verlag New York, 1995
  • 8[2]Scholkopf B, Smola A, Muller K. Non-linear Component Analysis as a Kernel Eigenvalue Problem. Neural Network,1998:1299-1319
  • 9[3]Muller K, Mika S, Ratsch G, et al. An Introduction to Kernel-based Learning Algorithms. IEEE Trans. on Neural Networks ,2001
  • 10[4]Sch lkopf B. The Kernel Trick for Distances. Technical Report MSR- TR-2000-51, 19 May 2000.

共引文献81

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部