期刊文献+

基于个体投资者情感量化的上证指数预测检验

Prediction Test of Shanghai Stock Index Based on Emotional Quantification of Individual Investors
下载PDF
导出
摘要 在缺乏验证个体投资者情感量化来预测股指的有效性背景下,对为期三个月的股吧评论数据进行抓取,运用朴素贝叶斯法进行投资者情感的量化分析。在对经过不同期滞后处理的时间序列数据进行相关性分析的基础上,采用VAR模型对上证指数的3分钟均线涨跌幅进行预测,并使用神经网络算法修正预测。结果表明:上证指数涨跌幅与投资者情感之间同时存在线性与非线性关系,且日区间联动幅度较大;构建模型时应综合考虑两者关系和投资者情感的异方差性。 Under the background of the absence of verifying effectiveness on predicting stock index by quantifying individual investor emotion,we grasped comments about the stock performance of the past three months from relevant post bars,utilized Na觙ve Bayes to quantitatively analyze investor emotion,then carried out correlation analysis on the time series data treated in different lag stages; further,used VAR model to predict the index's fluctuation of 3-minute average line,as well as applied neural network algorithm to modify the prediction model. The results show that there are linear and nonlinear relationships between the Shanghai stock index's decline and investor emotion,and the daily linkage is relatively large. Both the relationships and the heteroscedasticity of investor emotion should be considered while constructing model.
出处 《经济研究导刊》 2018年第26期159-164,共6页 Economic Research Guide
关键词 个体投资者 情感量化 朴素贝叶斯 VAR模型 神经网络算法 Individual investor Emotional quantification Nave Bayes VAR model Neural network algorithm
  • 相关文献

参考文献1

二级参考文献20

  • 1王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 2SUN Guanglu, SUN Hongyue, MA Yingcai, et al. Spam Filte- ring: Online na'l've Bayes Based on TONE[ C ]//ZTE Communica- tions, 2013:51 -54.
  • 3CORMACK G, LYNAM T. TREC 2005 Spam Track Overview [ C ]//Proceedings of the Fourteenth text Retrieval Conference Proceedings. US : Text REtrieval Conference, 2005 : 123 - 130.
  • 4CORMACK G. TREC 2006 Spam Track Overview [ C ]//Proceed- ings of the Fifteenth Text Retrieval Conference Proceedings, US: Text REtrieval Conference, 2006 : 117 - 128.
  • 5SCULLEY D. Online Active Learning Methods for Fast Label-Effi- cient Spam Filtering [ C ]//CEAS, 2007 : 1 - 4.
  • 6SCULLEY D. Practical Learning From One-sided Feedback [ C ]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007:609 -618.
  • 7CHEN C, TIAN Y, ZHANG C. Spam Filtering with Several Novel Bayesian Classifiers [ C ]//Pattern Recognition, 2008, ICPR, 19th Intemational Conference on IEEE, 2008:1 -4.
  • 8TONG S, KOLLER D. Support Vector Machine Active Learning with Applications to Text Classification [ J ]. The Journal of Ma- chine Learning Research, 2002, 2 : 45 - 66.
  • 9GOODMAN J, YIH W. Online Discriminative Spare Filter Train- ing[ C]//CEAS, 2006 : 1 -4.
  • 10SAHAMI M, DUMAIS S, HECHERMAN D. A Bayesian Ap- proach to Filtering Junk e-mail[ C ]//Learning for Text Categori- zation: Papers from the 1998 Workshop, 1998, 62:98 -105.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部