期刊文献+

基于FDC2214电容传感器的手势识别系统 被引量:8

Gesture Recognition System Based on FDC2214 Capacitance Sensor
下载PDF
导出
摘要 文中基于FDC2214芯片开发出一套手势识别系统,并给出了相关性能的线性评价指标。通过软件仿真及实验测试验证了FDC2214芯片对手势变化时电容变化量的捕捉和处理能力。实验结果表明,与传统的识别系统相比,该系统对于基本手势的识别具有较好的识别效果平均手势学习时间为1. 04±0. 14 s,识别时间为0. 87±0. 21 s,实时正确率为(96. 3±3. 4)%。 A gesture recognition system is developed based on FDC2214 chip, and the related periomlance linear evaluation index is given. The ability of capturing and processing capacitance changes of FDC2214 chips is verified by software simulation and experimental tests. The experimental results show that compared with the traditional recognition system, the system has better recognition ettbct tor basic gesture recognition. The average gesture learning time was (l. 04± 0. 14) s, the recognition time was (0. 87 ±0. 21 ) s, and the real - time accuracy rate was (96. 3 ± 3.4) %.
作者 高泷森 王磊 孟凡强 刘明民 GAO Longsen1, WANG Lei2, MENG Fanqiang, LIU Mingmin(1. School of Information and Communication Engineering, Hebei Geographic University, Shijiazhuang 050031, China ; 2. School of Intelligent Manufactring, Panzhihua University, Panzhihua 617000, China)
出处 《电子科技》 2018年第10期76-78,共3页 Electronic Science and Technology
关键词 FDC2214 手势识别机器学习 STM32F407 FDC2214 hand gesture recognition machine learning STM32F407
  • 相关文献

参考文献6

二级参考文献37

  • 1郁有文,常健.绝对码编码器中一种新型的编码方法[J].仪器仪表学报,2004,25(4):541-544. 被引量:26
  • 2陈晓荣,陈淑芬,杨甫勤.增量式编码器的相位编码细分研究[J].仪器仪表学报,2007,28(1):132-135. 被引量:19
  • 3机械工程手册电机工程手册编委会编.电机工程手册第二版,电力电容器篇[M].北京机械工业出版社,1996..
  • 4ARUMUGAM M S,RAO M V C.A new and improved version of particle swarm optimization algorithm with global-local best parameters[C].Knowl Inf Syst,2008:331-357.
  • 5SUYKENS J A K,LUKAS L,VANDEWALLE J.Approximation using least squares support vector machine[C].IEEE Int Symposium 071 Circuits and Systems,2000:757-760.
  • 6CHEN L D,TORU S.Data mining methods,applications,and tools[J].Information system management,2000,17(1):65-70.
  • 7WILLIAMS W J,JEONG J.New time-frequency distribution:Theory and applications[C].IEEE International Symposium on Source,1989:1243-1247.
  • 8Mannini A, Sabatini A M. Machine learning methods forclassifying human physical activity from on-body accelerometer-s[J]. Sensors,2010,10(2) :1154 —1175.
  • 9Schlomer T,Poppinga B,Henze N,et al. Gesture recognition witha wii controller [ C ] // Proceedings of the 2nd InternationalConference on Tangible and Embedded Interaction, New York :ACM, 2008: 11 -14.
  • 10He Z, Jin L, Zhen L, et al. Gesture recognition based on 3Daccelerometer for cell phones interaction [ C ]//IEEE Asia PacificConference on Circuits and Systems, APCCAS 2008, IEEE,2008:217-220.

共引文献60

同被引文献55

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部