摘要
针对随机需求的动态车辆路径问题,以最小化成本和最大化客户满意度为目标,采用两阶段建模,把动态车辆路径问题转换为静态车辆路径问题,将量子理论与蚁群算法结合并加以改进,用量子Hε门代替传统的量子旋转门实现对蚁群的更新.用Matlab7. 0软件实现数据仿真,验证了本文改进的量子蚁群算法是求解该问题有效的方法之一.
Aiming at the problem of dynamic vehicle routing with stochastic demand,two-stage modeling is adopted to minimize the cost and maximize customer satisfaction. The dynamic vehicle routing problem is transformed into a static vehicle routing problem. The quantum theory is combined with the ant colony algorithm,and Quantum Gate is used instead of the traditional quantum revolving door to update the ant colony. Matlab is employed to simulate the data,which proves that the improved quantum ant colony algorithm is one of the effective methods to solve this problem.
作者
宁涛
焦璇
魏瑛琦
梁旭
NING Tao;JIAO Xuan;WEI Yingqi;LIANG Xu(Software Institute,Dalian Jiaotong University,Dalian 116045,China;Institute of Accountancy,Dalian Neusoft University,Dalian 116023,China)
出处
《大连交通大学学报》
CAS
2018年第5期107-110,共4页
Journal of Dalian Jiaotong University
基金
中国博士后科学基金资助项目(2017M611231)
辽宁省博士启动基金资助项目(201601244
20170520229)
辽宁省社科规划基金资助项目(L18BGL018)
关键词
动态车辆路径
随机需求
两阶段建模
量子蚁群
dynamic vehicle path
stochastic demand
two-stage modeling
quantum ant colony