期刊文献+

基于量子蚁群算法的随机需求的动态车辆路径问题 被引量:7

Dynamic Vehicle Routing Problem with Stochastic Demand based on Quantum Ant Colony Algorithm
下载PDF
导出
摘要 针对随机需求的动态车辆路径问题,以最小化成本和最大化客户满意度为目标,采用两阶段建模,把动态车辆路径问题转换为静态车辆路径问题,将量子理论与蚁群算法结合并加以改进,用量子Hε门代替传统的量子旋转门实现对蚁群的更新.用Matlab7. 0软件实现数据仿真,验证了本文改进的量子蚁群算法是求解该问题有效的方法之一. Aiming at the problem of dynamic vehicle routing with stochastic demand,two-stage modeling is adopted to minimize the cost and maximize customer satisfaction. The dynamic vehicle routing problem is transformed into a static vehicle routing problem. The quantum theory is combined with the ant colony algorithm,and Quantum Gate is used instead of the traditional quantum revolving door to update the ant colony. Matlab is employed to simulate the data,which proves that the improved quantum ant colony algorithm is one of the effective methods to solve this problem.
作者 宁涛 焦璇 魏瑛琦 梁旭 NING Tao;JIAO Xuan;WEI Yingqi;LIANG Xu(Software Institute,Dalian Jiaotong University,Dalian 116045,China;Institute of Accountancy,Dalian Neusoft University,Dalian 116023,China)
出处 《大连交通大学学报》 CAS 2018年第5期107-110,共4页 Journal of Dalian Jiaotong University
基金 中国博士后科学基金资助项目(2017M611231) 辽宁省博士启动基金资助项目(201601244 20170520229) 辽宁省社科规划基金资助项目(L18BGL018)
关键词 动态车辆路径 随机需求 两阶段建模 量子蚁群 dynamic vehicle path stochastic demand two-stage modeling quantum ant colony
  • 相关文献

参考文献1

二级参考文献7

  • 1Teodorovic D, Radivojevic G. A fuzzy logic approach to dynamic Dial-A-Ride problem [J]. Fuzzy Set and Systems, 2000, 116(16): 23-33.
  • 2Fu Z, Eglese R, Li LY. Corrigendum: A new tabu search algorithm for the open vehicle routing problem [J]. Journal of the Operational Research Society, 2006, 57(8): 1008-1018.
  • 3Ishibuchi H, Murata T. A multi-objective genetic local search algorithm and its application to flow shop scheduling [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 1998, 28(3): 392-403.
  • 4Fattahi P, Fallahi A. dynamic scheduling in flexible job shop systems by considering simultane- ously efficiency and stability [J]. Journal of Manufacturing 2cience and Technology, 2010, 2(2): 114-123.
  • 5Bagheri A, Zandith M, Mahdavi I, et al. An artificial immune algorithm for the flexible job-shop scheduling problem [J]. Future Generatiott Computer Systems, 2010, 26(4): 533-541.
  • 6Seyed H A, Rahmat M, Zandieh M Y. Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem [J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(5): 915-932.
  • 7张建勇,郭耀煌,李军.模糊需求信息条件下的车辆路径问题研究[J].系统工程学报,2004,19(1):74-78. 被引量:26

共引文献9

同被引文献53

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部