期刊文献+

基于逻辑回归的车辆检测方法研究 被引量:2

Study on vehicle detection method based on logistic regression
下载PDF
导出
摘要 针对高速公路追尾事故频发而导致自动驾驶系统需要提高车辆检测的实时性问题,本文提出了一种基于逻辑回归的车辆检测方法。首先,通过对包含车辆与非车辆图像的训练集提取HOG特征来训练逻辑回归分类模型以获得好的回归系数;然后,采用滑动窗口机制对截取的视频帧提取HOG特征并利用过训练好的逻辑回归模型进行检测,并结合非极大值抑制技术去除了多余的检测窗口;通过实验,在车辆图像的测试集上该模型的识别正确率达到了96.23%,在视频帧上的车辆检测效果显示该方法可满足实时性要求。 Frequent rear-end accidents on the highway makes the automatic driving system have to improve the real-time performanee of the vehiele deteetion, and a vehiele deteetion method based on Logistie Regression is proposed to overeome this problem in this paper. First of all, extraeting the HOG features of the dataset eonsist of vehiele and non-vehiele pietures to train the Logistie Regression Model (LRM) so as to obtain a good regression eoeffieient; then using the sliding window meehanism to extraet the HOG features of the intereept video frame and applying the well-trained LRM for deteetion, meanwhile, eombining with the non-maximal value suppression teehnique to remove the redundant deteetion window. Experiments on the vehiele image test dataset show that the vehiele identifieation aeeuraey of the LRM reaehes 96.23% and the performanee of vehiele deteetion on the video frame proves that the proposed method ean meet the real-time need.
作者 蓝章礼 陈巍 杨扬 LAN Zhang-li;CHEN Wei;YANG Yang(School of Information Science & Engineering,Chongqing yiaotong University,Chongqing 400074,China)
出处 《电子设计工程》 2018年第20期77-81,共5页 Electronic Design Engineering
基金 重庆市基础科学与前沿技术研究专项项目(cstc2016jcyjA1953)
关键词 车辆检测 HOG 逻辑回归 滑动窗口 非极大值抑制 vehicle detection HOG logistic regression sliding window non-maximum suppression
  • 相关文献

参考文献8

二级参考文献109

  • 1施树明,储江伟,李斌,郭烈,王荣本.基于单目视觉的前方车辆探测方法[J].农业机械学报,2004,35(4):5-8. 被引量:15
  • 2潘泉,叶西宁,张洪才.广义概率数据关联算法[J].电子学报,2005,33(3):467-472. 被引量:29
  • 3朱文球,刘强.融合AdaBoost和启发式特征搜索的人脸性别分类[J].计算机工程,2007,33(2):171-173. 被引量:7
  • 4Sun Z, George B, Ronald M. On-road vehicle detection : A review[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2006,28:694-711.
  • 5Bertozzi M, Broggi A. GOLD:A parallel real-time stereo vision system for generic obstacle and lane detection[J].IEEE Transactions on Image Processing,1998,7(1) :62-81.
  • 6Bertozzi M, Broggi A, Cellario M, et al. Artifical vision in road vehicles [ J ]. Proceedings of the IEEE, 2002,90 (7) :1258-1271.
  • 7Thorpe C, Hebert M, Kanade T, et al. Vision and navigation for the carnegie-mellon navlab [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10:362-373.
  • 8Bensrhair A,Bertozzi M, Broggi A, et al. A cooperative approach to vision-based vehicle detection [ A ]. Proceedings of Intelligent Transportation Systems [ C ]. Oakland : IEEE ,2001:207-212.
  • 9Bertozzi M,Broggi A,Fascioli A,et al. Stereo vision-based vehicle detection[ A]. Proceedings of Intelligent Vehicles Symposium[ C ]. Dearborn: IEEE ,2000:39-44.
  • 10Giachetti A, Campani M, Torre V. The use of optical flow for road navigation [ J ]. IEEE Transactions Robotics and Automation, 1998, l g ( 1 ) :34-48.

共引文献317

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部