期刊文献+

基于Delaunay图的人工蜂群算法在WSN覆盖策略中的优化研究 被引量:2

Optimization of Artificial Bee Colony Algorithm Based on Delaunay Graph in WSN Coverage Strategy
下载PDF
导出
摘要 传统的人工蜂群算法在应用于无线传感器网络覆盖时,虽然可以提高网络覆盖率,但是其后期收敛速度慢和早熟收敛等缺点,大量的消耗时间和能量,也无法确保网络覆盖质量.为提高混合无线传感器网络的覆盖效率,提出一种基于Delaunay图的人工蜂群算法控制移动节点的部署策略.通过固定节点形成的Delaunay图先找出覆盖漏洞,估算覆盖漏洞面积并计算出移动节点即引领蜂的数量和初始位置,通过评价覆盖漏洞面积的大小确定侦查蜂的局部搜索空间.通过对不同算法的仿真结果分析表明:D-ABC提高了网络覆盖率,进行了混合无线传感器网络覆盖策略的优化. The traditional artificial bee colony algorithm can improve the network coverage when it is applied to the coverage of wireless sensor networks. Though it can improve the network coverage, its shortcomings such as slow convergence, premature convergence, a lot of waste and energy consumption can not guarantee the quality of network coverage. In order to improve the coverage efficiency of hybrid wireless sensor networks, an artificial bee colony algorithm based on Delaunay graph is proposed to control the deployment strategy of mobile nodes. Firstly, coverage loopholes was found through the fixed node to form the Delaunay graph. Estimate the coverage of the vulnerability area and calculate the number of mobile nodes that lead the bee and the initial position. The local search space of the detection bee was determined by evaluating the size of the coverage vulnerability area. Through the analysis of the simulation results of different algorithms ,D-ABC improved network coverage and optimized the hybrid wireless net- work coverage strategy.
作者 王军 赵子君 李国强 WANG Jun, ZHAO Zi-jun, LI Guo-qiang(Shenyang University of Chemical Technology, Shenyang 110142, China)
出处 《沈阳化工大学学报》 CAS 2018年第3期283-288,共6页 Journal of Shenyang University of Chemical Technology
基金 国家工信部智能制造专项(工信厅联装函【2016】337号) 辽宁省自然科学基金(2015020082 2015020643) 沈阳市创新人才支持计划
关键词 Delaunay图 人工蜂群算法 无线传感器网络 网络覆盖优化 Delaunay graph artificial bee colony algorithm wireless sensor networks network coverage optimization
  • 相关文献

参考文献6

二级参考文献80

  • 1赵保华,李婧,张炜,屈玉贵.基于MIMO的节能无线传感器网络[J].电子学报,2006,34(8):1415-1419. 被引量:14
  • 2杨洪生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006:3-4.
  • 3Jutten C,Herault J.Blind separation of sources,part I:an adap- tive algorithm based on neuromimefic I J]. Signal Processing, 1991,24(1) :1 - 10.
  • 4Cardoso J F, Laheld B H. Equivariant adaptive sources separa-tion [ J ].IEEE. Transactions on Signal Processing, 1996, 44 (12) ,3017 - 3029.
  • 5Zhou Guoxu, Yang Zuyuan, Xie Shengli, et al.Mixing Matrix estimation from sparse mixtures with unknown number of sources[ J]. IEEE Transactions on Neural Networks, 2011,22 (2) :211 - 221.
  • 6Acharya D P,Panda G,Mishra S,et al. Bacteria foraging based independent component analysis[ A ]. Proceedings of the Inter- national Conference on Computational Intelligence and Multi- media Applications ( ICCIMA2007 ) [ C ]. Washington: 1EEE Computer Society Press,2007.527- 531.
  • 7Karaboga D. An idea based on honey bee swarm for numerical optimization [ R ]. Kayseri: Erciyes University, Engineering Faculty, Computer Engineering Deparanent,2005.
  • 8Banhamsakun A, Achalakul T, Sirinaovakul B. The best-so-far selection in artificial bee colony algorithm[ J ]. Applied Soft Computing,2011,11(2) :2888 - 2901.
  • 9Yang H H, Amari S. Serial updating rule for blind separation derived from the method of seoring[J]. IEEE Transactions on Signal Processing, 1999,47 (8) : 2279 - 2285.
  • 10Senthil Arumugam M,Rao M V C,Tan Alan W C.A novel and effective particle swarm optimization like algorithm with extrapolation technique [ J ]. Applied Soft Computing, 2009,9 (1) :308 - 320.

共引文献54

同被引文献29

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部