期刊文献+

基于稀疏表示和深度学习的图像识别算法研究 被引量:2

Research on Image Recognition Algorithm Based on Sparse Representation and Depth Learning
下载PDF
导出
摘要 针对传统的图像稀疏表示方法只注重提高特征的提取率而忽略了图像的多尺度信息,在对图像稀疏表示的过程中易受噪声干扰,及系统鲁棒性不高等问题,提出了多尺度稀疏表示方法。针对图像底层像素特征不稳定,易受环境影响,且不能反映语义信息等问题,提出利用深度网络具有的高层特征抽取这一能力,将多尺度稀疏表示和深度学习网络结合起来,构建完善的学习框架。实验结果表明,该算法可以提高图像的识别性能,同时增强系统的鲁棒性。 Aiming at the traditional image sparse representation method, it only focuses on improving the extraction rate of featuresand neglects the multi-scale information of the image, and in the process of image sparse representation susceptible to noiseinterference, system robustness is not high, the proposed multi-scale sparse representation. At the same time, because the underlyingpixel features of the image are unstable and sensitive to the environment, and can not reflect the semantic information, this paperproposesa new learning framework that uses deep networks to extract high -level features and combines multi -scale sparserepresentation with deep learning networks. Experiments show that the algorithm can improve the recognition performance of theimage and enhance the robustness of the system.
作者 吕焦盛 LYU Jiaosheng(College of Information Engineering,Zhengzhou University of Industrial Technology,Zhengzhou 451100,China)
出处 《新乡学院学报》 2018年第9期31-34,共4页 Journal of Xinxiang University
基金 河南省科技攻关计划项目(0721002210032)
关键词 特征提取 稀疏表示 深度学习 feature extraction sparse representation deep learning
  • 相关文献

参考文献5

二级参考文献36

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2DONOHO D L. Compressed sensing[ J ]. Information theory, 2006, 52(4) : 1289-1306.
  • 3LEE K C, HO J, KRIEGMAN D. Acquiring linear sub- spaces for face recognition under variable lighting [ J ]. Pat- tern analysis and machine intelligence, 2005, 27(5) : 684- 698.
  • 4NASEEM I, TOGNERI R, BENNAMOUN M. Linear regres- sion for face recognition [ J ]. Pattern analysis and machine intelligence, 2010, 32(11): 2106-2112.
  • 5WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation [ J ]. Pattern analysis and machine intelligence, 2009, 31(2) : 210-227.
  • 6AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an al- gorithm for designing overcomplete dictionaries for sparse representation [ J ]. Signal processing, 2006, 54 ( 11 ) : 4311-4322.
  • 7YANG M, ZHANG L, YANG J, et al. Metaface learning for sparse representation based face recognition[ C ]// Proceed- ings of the IEEE International Conference on Image Process- ing, Hong Kong, China, 2010, 119(5) :1601-1604.
  • 8YANG M, ZHANG D, FENG X, et al. Fisher discrimina- tion dictionary learning for sparse representation[ C ]// Pro- ceedings of the IEEE International Conference on Computer Vision. Barcelona, Spain, 2011, 24(4) :543-550.
  • 9YANG J, ZHANG Y. Alternating direction algorithms for ll- problems in compressive sensing [J]. arXiv: 0912. 1185, 2009, (1) :250-278.
  • 10UJDAT D M, MALIOUTOV D M, CETIN M, et al. Homo-topy continuation for sparse signal representation [ C ]//Pro- ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, USA, 2005 : 733-736.

共引文献49

同被引文献17

引证文献2

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部