期刊文献+

一种基于自适应控制的冷冻离心机温度控制算法

A Temperature Control Algorithm Based on Adaptive Control for Refrigerated Centrifuge
下载PDF
导出
摘要 冷冻离心机的温度的控制是冷冻离心机的关键技术与技术难点.主要从冷冻离心机的结构特点、影响温度的变化因素等方面,提出了控制温度的数学模型和算法,阐述了温度变化规则,描述了温度的变化曲线.研究表明,将该算法应用在不同类型的冷冻离心机上,都能提高对冷冻离心机温度的控制精度,其精确度高达到-1<f(s)<+1度. The temperature control is the key technology and technical difficulty of refrigerated centrifuge. Mainly from the aspects of the strueture characteristics of the refrigerated centrifuge and factors affecting the temperature, this article puts forward mathematical model and algorithm for controlling temperature, describes the rule of temperature change and the curve of temperature. The study shows that the algorithm can be applied to different types of refrigerated centrifuge, improving the performance of controlling the temperature with a precision as high as -1〈f(s) 〈+1 degree.
作者 陈兆仁 刘婉贞 CHEN Zhaoren;LIU Wanzhen(College of Information Science and Engineering,Hunan Normal University,Changsha Hunan 410006,China;Changsha Vocational and Technical College,Changsha Hunan 410217,China)
出处 《长沙大学学报》 2018年第5期22-24,共3页 Journal of Changsha University
关键词 控制算法 PID算法 中值数字滤波 阈值 control algorithm PID algorithm median digital fiher threshold
  • 相关文献

参考文献2

二级参考文献13

  • 1唐西胜,武鑫,齐智平.超级电容器蓄电池混合储能独立光伏系统研究[J].太阳能学报,2007,28(2):178-183. 被引量:80
  • 2Zhang Y, Jiang Z, Yu X. Control strategies for battery/supercapaci- tor hybrid energy storage systems [ A ]. Proceedings of Energy 2030 Conference [ C ]. Atlanta: IEEE,2008 : 1 - 6.
  • 3锗静,孙流芳.模糊控制原理与应用[M].北京:机械工业出版社.1995.
  • 4Pickands J, Statistical inference using extreme order statistics[ J].Annab of Statistics, 1975, (1) : 119 -131.
  • 5Rasmussen P F. Generalized probability weighted moments; Applica-tion to the generalized pareto distribution [ J ]. Water Resources Re-search,2001, (6) :1745-1751.
  • 6Ashkar F, Tatsambon N C. Revisiting some estimation methods forthe generalized pareto distribution [ J ]. Journal of Hydrology,2007,(6):136-143.
  • 7Thompson J R. Some shrinkage techniques for estimating the mean[J]. Journal of American Statistical Association, 1968,(321 ):113-122.
  • 8Qabaha M. Ordinary and Bayesian shrinkage estimation [ J]. An -Najah University Journal for Research,2007 ,(1): 101 - 116.
  • 9Prakash G, Singh DC. A Bayesian shrinkage approach in weibulltype - II censored data using prior point information[ J]. Revstat -Statistical Journal, 2009 ,(2) :171 - 187.
  • 10Prakash G, Singh D C. Bayesian shrinkage estimation in a class oflife testing distribution [ J ] . Data Science Journal, 2010, 8 : 243-258.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部