期刊文献+

基于放射影像组学和随机森林算法的肺结节良恶性分类 被引量:10

Classification of Benign and Malignant Pulmonary Nodules Based on Radiomics and Random Forests Algorithm
下载PDF
导出
摘要 针对现有的肺结节良恶性分类算法存在分类准确率不高的问题,文中提出了一种基于放射影像组学和随机森林算法的肺结节良恶性分类算法.首先,提出了一种新的多尺度圆形滤波,用于对肺结节进行增强;其次,采用阈值法、形状指数和纹理特征自动获取种子点,并将种子点注入到随机游走算法中,以实现对肺结节的准确分割;然后,对分割的肺结节进行灰度、纹理、形状、小波和临床表征特征的提取;最后,采用随机森林构造肺结节良恶性的预测模型,并使用数据库LIDC对预测模型进行训练.实验结果表明,文中提出的算法对肺结节良恶性具有较高的分类性能,准确率、敏感性和特异性分别为94%、92%和94%. To address the problem of low accuracy of the existing algorithms for classification of benign and malig- nant pulmonary nodules, a classification of benign and malignant pulmonary nodules based on radiomics and ran-dom frests algorithm is proposed in this paper. Firstly, a novel multi-scale dot enhancement filter is proposed for pulmonary nodule enhancement. Then, thresholding, shape index and texture featres are used to automatically acquire the seeds. The acquired seeds are injected into the random walker algorithm, thus accurate segmentation of pulmonary nodules is achieved. Secondly, the intensity, textron, shape, wavelet, and clinical featres are extracted from the segmented pulmonary nodules. Finally, random forest is employed to construct the predictive model for classifying benign and malignant pulmonary nodules. The LIDC database is used to train the predictive model. The experimental results demonstrate that the proposed algorithm has the high classification performance for classification of benign and malignant pulmonary nodules, and then accuracy, sensitivity and specificity are 94% , 92% and 94% , respectively.
作者 李祥霞 李彬 田联房 朱文博 张莉 LI Xiangxia1, LI Bin1,TIAN Liarang1, ZHU Wenbo2 ,ZHANG Li1(1.School of Automation Science and Engineering, South China University of Technology, Guangzhou 51064, Guangdong, China; 2. School of Automation, Foshan University, Foshan 528000, Guangdong, China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第8期72-80,共9页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61305038,61273249) 海洋公益性行业科研专项经费资助项目(201505002) 华南理工大学中央高校基本科研业务费专项资金重点项目(2015ZZ028)
关键词 肺结节 图像分类 恶性 随机游走 随机森林 放射影像组学 pulmonary nodules image classification malignancy random walker random forests radionfics
  • 相关文献

参考文献2

二级参考文献34

  • 1Lin Daw-yung, Yan Chung-ren, Chen Wen-tai. Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system [ J ]. Computerized Medical Imageing and Graphics,2005,29:447-458.
  • 2Xu X W, Doi K, Kobayashi T, et al. Development of an improved CAD scheme for automated detection of lung nodules in digital chest images [ J ]. Medical Physics, 1997,24(9) :1395-1403.
  • 3Kanazawa K, Kawata Y, Niki N, et al. Computer-aided diagnosis for pulmonary nodules based on helical CT images[J]. Computerized Medical Imaging and Graphics, 1998, 22 : 157-167.
  • 4Satoh H, Ohmatsu H, Kakinuma R,et al. Lung cancer detection based on helical CT images using curves surface morphology analysis [ J ]. Proceeding of SPIE, 1999, 3661 : 1307-1314.
  • 5Vapnik V. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 1995:91-188.
  • 6Cristianini N,Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods [ M ]. Cambridge : Cambridge University Press, 2000 : 47-98.
  • 7Dehmeshki Jamshid, Chen Jun, Casique M V, et al. Classification of lung data by sampling and support vector machine [C]//Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco : IEEE,2004 : 3194-3197.
  • 8Lilla B, Zhao Luyin, Lee K P. Feature subset selection for improving the performance of false positive reduction in lung nodule CAD [ J ]. IEEE Transactions on Information Technology in Biomedicine ,2006,10( 3 ) :504-511.
  • 9Ganeshan B, Miles K A,Young R C, et al. Texture analysis in non-contrast enhanced CT:impact of malignancy on texture in apparently disease-free areas of the liver [ J ]. European Journal of Radiology,2009,70( 1 ) : 101-110.
  • 10Gurcan Metin N, Sahiner Berkman, Petrick Nicholas, et al. Lung nodule detection on thoracic computed tomo- graphy images: preliminary evaluation of a computeraided diagnosis system [ J ]. Medical Physics, 2002, 29 ( 11 ) :2552-2558.

共引文献14

同被引文献88

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部