期刊文献+

基于协同过滤Attention机制的情感分析模型 被引量:15

Sentiment Analysis Based on Collaborative Filter Attention Mechanism
下载PDF
导出
摘要 该文主要研究在评论性数据中用户个性及产品信息对数据情感类别的影响。在影响数据情感类型的众多因素中,该文认为评价的主体即用户以及被评价的对象等信息对评论数据的情感至关重要。该文提出一种基于协同过滤Attention机制的情感分析方法(LSTM-CFA),使用协同过滤(CF)算法计算出用户兴趣分布矩阵,再将矩阵利用SVD分解后加入层次LSTM模型,作为模型注意力机制提取文档特征、实现情感分类。实验表明LSTMCFA方法能够高效提取用户个性与产品属性信息,显著提升了情感分类的准确率。 This paper investigates the influence of user's personality and product information on data emotion category in review data.Among the many factors that affect the emotional data type,the subject of the evaluation,that is,the user and the object of the evaluation,are emotionally important to the commentary data.In this paper,an emotional analysis model(LSTM-CFA)based on cooperative filtering attention mechanism is proposed.The user interest distribution matrix is calculated by using the collaborative filtering(CF)algorithm.After the matrix is decomposed with SVD,the matrix is added to the hierarchical LSTM model as an attention mechanism in order to achieve emotion classification.Experiments show that the LSTM-CFA model can extract the information of user's personality and product attribute efficiently,to improve the accuracy of emotion classification.
作者 赵冬梅 李雅 陶建华 顾明亮 ZHAO Dongmei;LI Ya;TAO Jianhua;GU Mingliang(School of Physics Electronic Engineering,Jiangsu Normal University,Xuzhou,Jiangsu 221116,China;National Laboratory of Pattern Recognition,Institute of Automation,Chinese Academy of Sciences,Beijing 100101,China)
出处 《中文信息学报》 CSCD 北大核心 2018年第8期128-134,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金(61425017 61403386 61773379) "863"高技术研究计划(2015AA016305) 国家社会科学基金(13&ZD189)
关键词 情感分析 协同过滤 LSTM 注意力机制 SVD sentiment analysis collaborative filtering LSTM attention mechanism SVD
  • 相关文献

参考文献3

二级参考文献35

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2ChristopherD.Manning,PrabhakarRaghavan,HinrichSchutze.信息检索导论【M].王斌泽.北京:人民邮电出版社,2010.9.
  • 3Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms EC~//Proceedings of the 10th international conference on World Wide Web. ACM, 2001.. 285-295.
  • 4Resniek P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of net- newsEC~//Proceedings of the 1994 ACM conference on computer supported cooperative work. ACM, 1994: 175-186.
  • 5Linden G, Smith B, York J. Amazon. corn recommen- dations: Item-to-item collaborative filtering[J]. Inter- net Computing, IEEE, 2003, 7(1): 76-80.
  • 6Linden G D, Jaeobi J A, Benson E A. Collaborative recommendations using item-to-item similarity map- pings: U.S. Patent 6,266,649EP]. 2001-7-24.
  • 7Su X, Khoshgoftaar T M. A survey of collaborative filtering techniques EJ]. Advances in artificial intelli- gence, 2009: 4.
  • 8Koren Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model [C]//Pro- ceedings of the 14th ACM SIGKDD international con- ference on knowledge discovery and data mining. ACM, 2008: 426-434.
  • 9Koren Y. Factor in the neighbors.. Scalable and accu- rate collaborative filtering[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2010, 4 (1) : 1.
  • 10Miyahara K, Pazzani M J. Collaborative filtering with the simple Bayesian classifier[M~. PRICAI 2000 Top- ics in Artificial Intelligence. Springer Berlin Heidel- berg, 2000: 679-689.

共引文献554

同被引文献88

引证文献15

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部