摘要
目的探讨基于CT影像组学模型在预测原发性肝癌(HCC)患者3年生存期中的价值。方法回顾性分析2010年1月至2014年6月浙江省肿瘤医院经穿刺病理或临床诊断为HCC,且巴塞罗那临床肝癌(BCLC)B期行肝动脉化疗栓塞术(TACE)的81例患者,64例作为训练组,17例作为验证组。通过随访了解患者出院后3年的存活情况,将患者分为存活组39例,死亡组42例。患者在TACE前均行上腹部CT平扫及增强扫描。分别对目标病灶术前的肝脏动脉期和门静脉期的CT图像进行高通量数据采集,提取动脉期和门静脉期各376个特征参数,利用LASSO回归对特征参数降维,多元logistic回归构建预测模型,采用ROC评价模型预测效能。结果通过LASSO降维分别筛选出动脉期8个特征参数,门静脉期5个特征参数。动脉期预测模型在训练组中曲线下面积为0.833,敏感度为83.9%(26/31),特异度为81.8%(27/33),模型准确率为82.8%(53/64);在验证组中曲线下面积为0.861,敏感度为75.0%(6/8),特异度为100.0%(9/9),模型准确率为88.2%(15/17)。门静脉期预测模型在训练组中曲线下面积为0.858,敏感度为83.3%(25/30),特异度为85.3%(29/34),模型准确率为84.4%(54/64);在验证组中曲线下面积为0.750,敏感度为75.0%(6/8),特异度为100.0%(9/9),模型准确率为88.2%(15/17)。结论基于术前CT建立的影像组学预测模型预测HCC患者3年生存期具有价值。
ObjectiveTo explore the value of CT radiomics model in predicting three-year survival time in patients with primary hepatocellular carcinoma (HCC).MethodsEighty one patients pathologically or clinically confirmed HCC and B stageof Barcelona clinical liver cancer before transcatheter arterial chemoembolization (TACE) in Zhejiang Cancer Hospitalwere retrospectively enrolled from January 2010 to June 2014.A primary cohort consisted of 64 patients and an independent validation cohort consisted of 17 patients. The patients were divided into survival group of 39 cases and death groupof 42 cases duringthree-year follow-up. All the patients underwentnon-enhanced and contrast-enhanced CTimages scan before TACE. Three hundered and seventy six quantization radiomics features were extracted from the arterial phase and portal phase CTimages of target lesion. LASSO regression model was used for data dimension reduction. Logistic regression was used to develop the prediction model. The predictive ability of the model was validated using the area under the curve (AUC) of receiver operating characteristic(ROC) analysis.ResultsThe radiomics features selected from the arterial and portal phase were 8 and 5, respectively. The arterial prediction model showed AUC=0.833,sensitivity=83.9%(26/31),specificity=81.8%(27/33), accuracy=82.8%(53/64)in primary datasetand AUC=0.861, sensitivity=75.0%(6/8), specificity=100.0% (9/9), accuracy=88.2%(15/17)in independent validation dataset.The portal prediction model showed AUC=0.858,sensitivity=83.3%(25/30),specificity=85.3%(29/34), accuracy=84.4%(54/64)in primary dataset and AUC=0.750, sensitivity=75.0%(6/8), specificity=100.0%(9/9), accuracy=88.2(15/17)in independent validation dataset.ConclusionThis study shows CT radiomics model can be conveniently used to facilitate the preoperative individualized prediction of three-year survival time in patients with HCC.
作者
刘璐璐
杨虹
邵国良
范林音
杨永波
庞佩佩
陈愿君
Liu Lulu;Yang Hong;Shao Guoliang;Fan Linyin;Yang Yongbo;Pang Peipei;Chen Yuanjun(Department of Radiology,Zhejiang Cancer Hospital,Hangzhou 310022,China)
出处
《中华放射学杂志》
CAS
CSCD
北大核心
2018年第9期681-686,共6页
Chinese Journal of Radiology
基金
浙江省卫生高层次创新人才培养工程基金(2012-241)
浙江省医药卫生科技计划(2016DTA002)
关键词
癌
肝细胞
影像组学
人工智能
Carcinoma
hepatocellular
Radiomics
Artificial intelligence