期刊文献+

基于CT影像组学模型预测原发性肝癌3年生存期的价值 被引量:23

CT radiomics model for predicting the three-year survival time of primary hepatocellular carcinoma
原文传递
导出
摘要 目的探讨基于CT影像组学模型在预测原发性肝癌(HCC)患者3年生存期中的价值。方法回顾性分析2010年1月至2014年6月浙江省肿瘤医院经穿刺病理或临床诊断为HCC,且巴塞罗那临床肝癌(BCLC)B期行肝动脉化疗栓塞术(TACE)的81例患者,64例作为训练组,17例作为验证组。通过随访了解患者出院后3年的存活情况,将患者分为存活组39例,死亡组42例。患者在TACE前均行上腹部CT平扫及增强扫描。分别对目标病灶术前的肝脏动脉期和门静脉期的CT图像进行高通量数据采集,提取动脉期和门静脉期各376个特征参数,利用LASSO回归对特征参数降维,多元logistic回归构建预测模型,采用ROC评价模型预测效能。结果通过LASSO降维分别筛选出动脉期8个特征参数,门静脉期5个特征参数。动脉期预测模型在训练组中曲线下面积为0.833,敏感度为83.9%(26/31),特异度为81.8%(27/33),模型准确率为82.8%(53/64);在验证组中曲线下面积为0.861,敏感度为75.0%(6/8),特异度为100.0%(9/9),模型准确率为88.2%(15/17)。门静脉期预测模型在训练组中曲线下面积为0.858,敏感度为83.3%(25/30),特异度为85.3%(29/34),模型准确率为84.4%(54/64);在验证组中曲线下面积为0.750,敏感度为75.0%(6/8),特异度为100.0%(9/9),模型准确率为88.2%(15/17)。结论基于术前CT建立的影像组学预测模型预测HCC患者3年生存期具有价值。 ObjectiveTo explore the value of CT radiomics model in predicting three-year survival time in patients with primary hepatocellular carcinoma (HCC).MethodsEighty one patients pathologically or clinically confirmed HCC and B stageof Barcelona clinical liver cancer before transcatheter arterial chemoembolization (TACE) in Zhejiang Cancer Hospitalwere retrospectively enrolled from January 2010 to June 2014.A primary cohort consisted of 64 patients and an independent validation cohort consisted of 17 patients. The patients were divided into survival group of 39 cases and death groupof 42 cases duringthree-year follow-up. All the patients underwentnon-enhanced and contrast-enhanced CTimages scan before TACE. Three hundered and seventy six quantization radiomics features were extracted from the arterial phase and portal phase CTimages of target lesion. LASSO regression model was used for data dimension reduction. Logistic regression was used to develop the prediction model. The predictive ability of the model was validated using the area under the curve (AUC) of receiver operating characteristic(ROC) analysis.ResultsThe radiomics features selected from the arterial and portal phase were 8 and 5, respectively. The arterial prediction model showed AUC=0.833,sensitivity=83.9%(26/31),specificity=81.8%(27/33), accuracy=82.8%(53/64)in primary datasetand AUC=0.861, sensitivity=75.0%(6/8), specificity=100.0% (9/9), accuracy=88.2%(15/17)in independent validation dataset.The portal prediction model showed AUC=0.858,sensitivity=83.3%(25/30),specificity=85.3%(29/34), accuracy=84.4%(54/64)in primary dataset and AUC=0.750, sensitivity=75.0%(6/8), specificity=100.0%(9/9), accuracy=88.2(15/17)in independent validation dataset.ConclusionThis study shows CT radiomics model can be conveniently used to facilitate the preoperative individualized prediction of three-year survival time in patients with HCC.
作者 刘璐璐 杨虹 邵国良 范林音 杨永波 庞佩佩 陈愿君 Liu Lulu;Yang Hong;Shao Guoliang;Fan Linyin;Yang Yongbo;Pang Peipei;Chen Yuanjun(Department of Radiology,Zhejiang Cancer Hospital,Hangzhou 310022,China)
出处 《中华放射学杂志》 CAS CSCD 北大核心 2018年第9期681-686,共6页 Chinese Journal of Radiology
基金 浙江省卫生高层次创新人才培养工程基金(2012-241) 浙江省医药卫生科技计划(2016DTA002)
关键词 肝细胞 影像组学 人工智能 Carcinoma hepatocellular Radiomics Artificial intelligence
  • 相关文献

参考文献4

二级参考文献24

  • 1Mitsuro Kanda,Hiroyuki Sugimoto,Shuji Nomoto,Hisaharu Oya,Soki Hibino,Dai Shimizu,Hideki Takami,Ryoji Hashimoto,Yukiyasu Okamura,Suguru Yamada,Tsutomu Fujii,Goro Nakayama,Masahiko Koike,Michitaka Fujiwara,Yasuhiro Kodera.B?cell translocation gene 1 serves as a novel prognostic indicator ofhepatocellular carcinoma[J]. International Journal of Oncology . 2015 (2)
  • 2Weiwei Li,Ying Liang,Biwei Yang,Huichuan Sun,Weizhong Wu.Downregulation of ARNT2 promotes tumor growth and predicts poor prognosis in human hepatocellular carcinoma[J]. J Gastroenterol Hepatol . 2015 (6)
  • 3Ting Dai,Dongsheng Zhang,Muyan Cai,Chanjuan Wang,Zhiqiang Wu,Zhe Ying,Jueheng Wu,Mengfeng Li,Dan Xie,Jun Li,Libing Song.Golgi phosphoprotein 3 ( GOLPH3 ) promotes hepatocellular carcinoma cell aggressiveness by activating the NF ‐κ B pathway[J]. J. Pathol. . 2015 (3)
  • 4Renan Chang,Lixian Wei,Yuhua Lu,Xiaopeng Cui,Cuihua Lu,Luoliang Liu,Dawei Jiang,YiCheng Xiong,Gang Wang,Chunhua Wan,Haixin Qian.Upregulated expression of ubiquitin-conjugating enzyme E2Q1 (UBE2Q1) is associated with enhanced cell proliferation and poor prognosis in human hapatocellular carcinoma[J]. Journal of Molecular Histology . 2015 (1)
  • 5Xiaodong Huang,Xingxiu Wang,Chun Cheng,Jing Cai,Song He,Hua Wang,Fang Liu,Changlai Zhu,Zongmei Ding,Xianting Huang,Tianyi Zhang,Yixin Zhang.Chaperonin containing TCP 1, subunit 8 ( CCT 8) is upregulated in hepatocellular carcinoma and promotes HCC proliferation[J]. APMIS . 2014 (11)
  • 6Baoying Hu,Yicheng Xiong,Runzhou Ni,Lixian Wei,Dawei Jiang,Gang Wang,Di Wu,Tianxin Xu,Fengbo Zhao,Mingyan Zhu,Chunhua Wan.The downregulation of ErbB3 binding protein 1 (EBP1) is associated with poor prognosis and enhanced cell proliferation in hepatocellular carcinoma[J]. Molecular and Cellular Biochemistry . 2014 (1-2)
  • 7Binkui Li,Pinzhu Huang,Jiliang Qiu,Yadi Liao,Jian Hong,Yunfei Yuan.MicroRNA-130a is down-regulated in hepatocellular carcinoma and associates with poor prognosis[J]. Medical Oncology . 2014 (10)
  • 8Roberto Galuppo,Dinesh Ramaiah,Oscar Moreno Ponte,Roberto Gedaly.SSJD14080400004873[J]. Digestive Diseases and Sciences . 2014 (8)
  • 9Mitsuro Kanda,Dai Shimizu,Shuji Nomoto,Soki Hibino,Hisaharu Oya,Hideki Takami,Daisuke Kobayashi,Suguru Yamada,Yoshikuni Inokawa,Chie Tanaka,Tsutomu Fujii,Hiroyuki Sugimoto,Masahiko Koike,Michitaka Fujiwara,Yasuhiro Kodera.Clinical significance of expression and epigenetic profiling of TUSC1 in gastric cancer[J]. J. Surg. Oncol. . 2014 (2)
  • 10Zheng Yun Zhang,Doopyo Hong,Seung Hoon Nam,Jong Man Kim,Yong Han Paik,Jae Won Joh,Choon Hyuck David Kwon,Jae Berm Park,Gyu-Seong Choi,Kyu Yun Jang,Cheol Keun Park,Sung Joo Kim.SIRT1 regulates oncogenesis via a mutant p53 -dependent pathway in hepatocellular carcinoma[J]. Journal of Hepatology . 2014

共引文献181

同被引文献128

引证文献23

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部