期刊文献+

NREL 5 MW风力机气动特性的数值模拟研究 被引量:3

NUMERICAL SIMULATION OF AERODYNAMIC PERFORMANCE OF NREL 5 MW WIND TURBINE
下载PDF
导出
摘要 以NREL 5 MW风力机为研究对象,忽略风轮的仰角和锥角,采用CFD数值模拟方法并选用SST湍流模型研究均匀来流条件下不同风速时风力机的输出功率,并与FAST软件的计算结果进行比较。分析叶片展向不同截面的压力分布和径向速度流场,讨论风力机尾流场速度和湍动能的变化规律。研究结果表明,沿着叶片展向自叶根至叶尖,吸力面压力逐渐降低,低压区覆盖面积逐渐增大;压力面压力逐渐升高,前缘与尾缘附近压力增幅较大。风穿过风轮能量被大量吸收,风轮对来流的阻塞作用主要集中在近尾流区。风轮后随着流体从近尾流区运动到远尾流区湍动能逐渐减小。 The aerodynamic performance of NREL 5 MW wind turbine without tih angle and cone angle is numerically investigated by using CFD numerical simulation method with SST turbulence model in this paper. The power calculated with different velocities in the condition of uniform speed is compared with the result of FAST software. In addition, pressure distribution and radial velocity flow field of blade at different locations along the blade is analyzed. The variation of velocity and turbulent energy of wind turbine wake flow field is discussed. The results showed that the pressure of the suction surface reduces along the blade from blade root to tip and the low pressure area gradually increases. The pressure of the pressure surface increases and the pressure increase sharply near the leading edge and trailing edge. A large number of wind energy is absorbed by the wind turbine, the wind turbine for coming flow blocking action mainly concentrated in the near wake region. The turbulent energy gradually decreases after the wind turbine with the fluid moving from the near wake to the far wake.
作者 左薇 李惠民 芮晓明 王晓东 康顺 Zuo Wei1, Li Huimin1, Rui Xiaoming2, Wang Xiaodong2, Kang Shun2,3(1. North China Power Engineering CO., LTD. of China Power Engineering Consulting Group, Beijing 100120, China; 2. Key Laboratory of CMCPPE Ministry of Education, North China Electric Power University, Beijing 102206, China ; 3. Xi'an Modern Control Technology Research Institute, Xi'an 710065, China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2018年第9期2446-2452,共7页 Acta Energiae Solaris Sinica
关键词 风力机 功率 尾流 湍流 wind turbine power wake turbulence
  • 相关文献

参考文献3

二级参考文献16

  • 1National Renewable Energy Laboratory. Wind Energy Information [Z]. U S Department of Energy, 1998.
  • 2Snel H. Review of the Present Status of Rotor Aerodynamics.[J]Jour of W1nd Energy, 1998, (1): 46-49.
  • 3Butterfield C P. Aerodynamic Pressure and Flow Visualization Measurement from a Rotating Wind Turbine Blade[C].Eighth ASME Wind Energy Symp., 1989.
  • 4Berg D E. Recent Improvements to the VDART3 Code[C]. Wind/Solar Energy Conf,, 1983.
  • 5Leishman J G. A Semi-Empirical Model for Dynamic Stall.[J]. Am. Helicopter Soc. 1989, 34(3): 25-35.
  • 6Bierbooms W. AComparison Between Unsteady Aerodynamic Models [A].Proc of Eur, Wind Energy Conf [C],EWEC, 1991.
  • 7Ninham C. and Selig M S. An Interactive Windows 95/NT Version of PROPID for the Aerodynamic Design of Horizontal Axis Wind Turbines [A].American Wind EnergyAssociation WINDPOWER 1997 Conference [C], Austin, TX, June 1997.
  • 8Robert J, Butler. The effect of turbulence intensity and length scale on low-pressure turbine blade aerodynamics [J].International Journal of Heat and Fluid Flow. 2001, 22: 123-133.
  • 9Deglaire P. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines [M]. Acta Universitatis Up- saliensis: Uppsala University, 2010.
  • 10Untariou A, Wood H G, Allaire P E, et al. Investigation of Self-Starting Capability of Vertical Axis Wind Turbines Using a Computational Fluid Dynamics Approach [J]. So- lar Energy Engineering, 2011, 133(4): 041010.

共引文献17

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部