期刊文献+

Cu-Ni-Sn系合金调幅分解的第一性原理计算

Spinodal Decomposition of Cu-Ni-Sn Alloy by First Principle
原文传递
导出
摘要 通过第一性原理计算了不同成分的Cu-Ni-Sn固溶体的晶格常数、形成能与分解能。结果表明,Ni含量对Sn的调幅分解影响较大,Ni含量低于20%时,Sn的调幅分离能随着Ni含量的增加而升高,Ni含量为20%的Cu-Ni-Sn固溶体具有最强的分解趋势。当Ni含量高于20%,Sn的调幅分离能急剧降低,固溶体能稳定形成,不发生调幅分解。Ni的调幅分解趋势比Sn的调幅分解趋势强很多,且受Sn含量的影响很小。Sn的调幅分解过程中固溶体的体积应变小,而Ni在调幅过程中,固溶体体积增大。 Based first principle,the lattice constants,formation energy and demixing energy of Cu-Ni-Sn solid solution with different components were calculated.The results reveal that the Ni content has a great influence on the spinodal decomposition of Sn.When the Ni content is less than 20%,the demixing energy of Sn is increased with the increase of Ni content,and Cu-Ni-Sn solid solution with 20%Ni presents the strongest trend of spinodal decomposition.When the Ni content is more than 20%,the demixing energy of Sn is reduced sharply,and the solid solution with different Sn content can be formed stably and absence of spinodal decomposition occurrs.The spinodal decomposition trend of Ni is much stronger than that of Sn and little influenced by Sn content.The volume strain of the solid solution is decreased during the spinodal decomposition of Sn,while the volume of solid solution is increased during the spinodal decomposition of Ni.
作者 彭广威 甘雪萍 Peng Guangwei1,2,Gan Xueping1(1. State Key Laboratory of Powder Metallurgy,Central South University; 2. Hunan Automotive Engineering Vocational Colleg)
出处 《特种铸造及有色合金》 CAS CSCD 北大核心 2018年第9期945-948,共4页 Special Casting & Nonferrous Alloys
关键词 CU-NI-SN合金 第一性原理 调幅分解 Cu-Ni-Sn Alloy First Principle Spinodal Decompostion
  • 相关文献

参考文献9

二级参考文献48

  • 1DAI Fuping CAO Chongde WEI Bingbo.Thermophysical properties of Ni-5%Sn alloy melt[J].Science China(Physics,Mechanics & Astronomy),2006,49(2):236-245. 被引量:7
  • 2Veprek S, Reiprich S. A concept for the design of novel superhard coatings[J]. Thin Solid Films, 1996,268:64.
  • 3Veprek S, Haussmann M, Reiprich S, et al. Novel thermodynamically stable and oxidation resistant superhard coating materials[J]. Surf Coat Techn, 1996,86-87 : 394.
  • 4Veprek S, Niederhofer A, Moto K, et al. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a-and ne-TiSi2 nanocomposites with Hv = 80 to >105 GPa[J]. Surf Coat Techn, 2000,133-134 : 152.
  • 5Han Z H, Hu X P, Tian J W, et al. Magnetron sputtered NbN thin films and mechanical properties [J]. Surf Coat Techn, 2004,179 ; 188.
  • 6Song Z X, et al. The effect of N2 partial pressure on the properties of Nb-Si-N films by RF reactive magnetron sputtering[J]. Surf Coat Techn, 2007,201 : 2897.
  • 7Sandu C S, Benkahoul M, Sanjines R, et al. Model for the evolution of Nb-Si-N thin films as a function of Si content relating the nanostructure to electrical and mechanical properties[J]. Surf Coat Techn, 2006,201: 5412.
  • 8Dong Y S, Liu Y, Dai J W, et al. Superhard Nb-Si-N composite films synthesized by reactive magnetron sputtering [J]. Appl Surf Sci,2006,252:5215.
  • 9Zhang R F, Veprek S. Phase stabilities of self-organized nc- TiN/a-Si3N4 nanocomposites and of Ti1-x SixNy solid solutions studied by ab initio calculation and thermodynamic modeling[J]. Thin Solid Films, 2008,516 : 2264.
  • 10Zhang R F, Veprek S. On the spinodal nature of the phase segregation and formation of stable nanostrueture in the Ti- Si-N system[J]. Mater Sci Eng A,2006,424: 128.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部