摘要
基于分解的多目标进化算法(MOEA/D)的求解精度与聚合方法有直接关系,其中基于惩罚的边界交叉聚合法(PBI)受惩罚参数θ影响较大,固定的惩罚参数难以匹配不同位置的子问题,尤其边界子问题上的极端解易被邻域内非支配解替代.为此,本文提出一种基于动态惩罚分解策略的高维目标进化算法(MOEA/D-DPS),通过动态调整惩罚参数θ来改变候选解选择区域大小,使不同位置的子问题都有更合适的选择区域,且减少了边界子问题上优秀解的丢失,更好地平衡了算法的收敛性与多样性.最后,本文通过仿真实验对比分析了MOEA/D-DPS算法与相关算法的性能,实验结果表明:MOEA/D-DPS算法在DTLZ1-4测试函数上所得解集整体性能更优.
The precision of the solutions generated by the multi-objective evolutionary algorithm based on decomposition (MOEA/D) is related to its decomposition approaches. The penalty-based boundary crossing strategy (PBI) of original MOEA/D is so much influenced by the penalty parameter θ that a fixed penalty parameter value is hard to befit the sub-problems all in different positions, and the extreme solutions situated in the boundary sub-problems are easily replaced by the non-dominated solutions in the neighborhood. In this paper, a many-objective evolutionary algorithm based on the dynamic penalty strategy (MOEA/D-DPS) is proposed, which alters the sizes of select area of the candidate solutions by dynamically adjusts the penalty parameter θ, provides the sub-problems in different positions with more appropriate select areas, reduces the loss of solutions with high quality that situated in the boundary sub- problems and keeps a better balance of convergence and diversity of the algorithm. Finally, this paper compares the performance of MOEA/D-DPS with related algorithms through simulation. The experimental results show that the MOEA/D-DPS algorithm is superior to the contrast algorithms in the DTLZ1-4 test functions.
作者
王丽萍
张梦紫
吴峰
章鸣雷
叶枫
WANG Li-ping;ZHANG Meng-zi;WU Feng;ZHANG Ming-lei;YE Feng(Institute of Information Intelligence and Decision Optimization,Zhejiang University of Technology,Hangzhou 310023,China;College of Business Administration,Zhejiang University of Technology,Hangzhou 310023,China)
出处
《小型微型计算机系统》
CSCD
北大核心
2018年第10期2154-2161,共8页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61472366
61379077
61503340)资助
浙江省自然科学基金项目(LY17F020022
LQ16F030008)资助
关键词
多目标优化
高维目标
分解策略
动态惩罚
multi-objective optimization
high-dimensional objective
decomposition strategy
dynamic punishment