期刊文献+

融合深度信息的Grabcut自动图像分割 被引量:6

Automatic Image Segmentation Combined Grabcut and Depth Information
下载PDF
导出
摘要 Grabcut是一种准确度很高的图像分割方法,但是当图像中存在前背景颜色相近、阴影或低对比度区域时,仅利用颜色、纹理等信息难以准确分割感兴趣区域,而深度信息中包含了这些信息所没有的物体相对前后位置的信息.鉴于此,本文在用显著性实现Grabcut自动分割的基础上,融合了深度信息,提高了算法的分割准确度.为了充分利用深度和显著信息,依次从两方面进行了改进:以深度信息指导的显著图来提取Grabcut矩形框;将深度和显著信息通过自适应权重结合到Grabcut的颜色模型中,改进原算法的能量公式.实验表明,与当前主流算法对比,本文算法更有效地结合了深度信息,提高了分割算法的准确性. Grabcut is a highly accurate segmentation method. However, it is difficult to accurately segment the region of interest using information such as color and texture when there are similar colors between foreground and background, shades or low contrast regions in the image, while the depth map includes the information about the relative front-to-back position of objects. In view of this, Based on the Grabcut automatic segmentation framework, this paper combines the depth information and improves the segmentation accuracy. In order to make full use of the depth and the saliency information, this paper improves it from two aspects: extract the Grabcut rectangle with the saliency map guided of depth information; combine the depth and saliency information into Grabcut's color model through adaptive weight. Experiments show that compared with the current algorithms, the proposed algorithm combines the depth in- formation more effectively and improves the accuracy of the segmentation algorithm.
作者 刘辉 石小龙 漆坤元 左星 LIU Hui;Sill Xiao-long;QI Kun-yuan;ZUO Xing(Chongqing University of Posts and Telecommunications,New Technology Application Research Center,Chongqing 400065,Chin;Chongqing Information Technology Designing Co.Ltd,Chongqing 400021,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第10期2309-2313,共5页 Journal of Chinese Computer Systems
关键词 图像分割 显著性 深度信息 GRABCUT image segmentation saliency depth information Grabcut
  • 相关文献

参考文献3

二级参考文献101

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Pal N R, Pal S K. A review on image segmentation tech- niques. Pattern Recognition, 1993, 26(9): 1277-1294.
  • 5Veksler O. Efficient Graph-based Energy Minimization Methods in Computer Vision [Ph.D. dissertation], Cornell University, USA, 1999.
  • 6Bhandarkar S M, Zhang H. A comparison of stochastic op- timization techniques for image segmentation. International Journal o? Intelligent Systems, 2000, 15(5): 441-476.
  • 7Wang J S, Swendsen R H. Cluster Monte Carlo algorithms. Physica A: Statistical Mechanics and Its Applications, 1990, 167(3): 565--578.
  • 8Tu Z W, Zhu S C. Image segmentation by data-driven Markov chain Conte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 657-673.
  • 9Barbu A, Zhu S C. Generalizing Swendsen-Wang to sam- pling arbitrary posterior probabilities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1239-1253.
  • 10MarteUi A, An application of heuristic search methods to edge and contour detection. Communications of the ACM, 1976, 19(2): 73-83.

共引文献157

同被引文献76

引证文献6

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部