期刊文献+

结合分数阶微分与结构张量的医学图像细微结构增强

Enhancement of Medical Image's Detail Structure Based on the Combination of Fractional Differential with Structure Tensor
下载PDF
导出
摘要 从分数阶微分和结构张量的特点出发,考虑到分数阶微分算子具有较好的纹理细节表达能力,结构张量具有保持图像几何形状的特性,本文通过构造分数阶结构张量,提出了结合分数阶微分算子与结构张量的医学图像细微结构增强方法.分别针对计算机断层扫描(CT)图像和磁共振(MR)图像做了增强实验,结合小波分解,对低频信号作Tiansi微分算子锐化以加强轮廓提取,对高频信号构建基于分数阶结构张量的特征值相干性度量,并根据此相干性度量加权高频信号以得到更清晰连续的纹理细节.实验结果表明,结合分数阶微分算子与结构张量的增强方法对图像的纹理细节表征能力更强,增强后的图像信息更为丰富,细节更为清晰,从而具有较好的临床应用潜力. Starting from the characteristics of fractional differential and structure tensor,considering that fractional differential operator has good texture detail expression and structure tensor has the property of preserving the image geometry,we proposes a medical image's detail structure enhancement method based on the combination of fractional differential operator with structure tensor by constructing fractional differential-based structure tensor. Image enhancement experiments are carried out with computed tomography images and magnetic resonance images respectively. Moreover,combining with the wavelet decomposition,for the low-frequency signal, we use Tiansi differential operators for sharpening to enhance the contour extraction, for the high-frequency signals, we construct the eigenvalue coherence based on fractional differential-based structure tensor, then according to this coherence, weighing the high-frequency signals to obtain clearer and continuous texture details. To conclude,experimental comparison results show that the combination of fractional differential operator and structural tensor enhancement method can enrich the texture details of the image, which can provide more information and clearer details and has better clinical application potential.
作者 王宇 王远军 靳珍怡 方丽萍 WANG Yu;WANG Yuan-jun;YlN Zhen-yi;FANG Li-ping(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,Chin;Zhongshan Hospital,Fudan University,Shanghai 200032,China;Shanghai Institute of Medical Imaging,Shanghai 200032,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第10期2314-2319,共6页 Journal of Chinese Computer Systems
基金 上海市自然科学基金项目(18ZR1426900)资助 国家自然科学基金项目(61201067)资助 微创励志创新基金项目(YS30809149)资助.
关键词 医学图像 结构张量 分数阶微分 增强 细微结构 medical image structure tensor fractional differential enhancement detail structure
  • 相关文献

参考文献2

二级参考文献17

  • 1袁晓,张红雨,虞厥邦.分数导数与数字微分器设计[J].电子学报,2004,32(10):1658-1665. 被引量:47
  • 2Loverro A. Fractional calculus: history, definitions and applications for the engineer [OL]. [ 2007-07-14 ] . http:// www. nd. edu/-msen/Teaching/UnderRes/FracCalc, pdf.
  • 3Leu J S, Papamarcou A. On estimating the spectral exponent of fractional Brownian motion [J]. IEEE Transactions on Information Theory, 1995, 41( 1 ):233-244.
  • 4Liu S C, Chang S Y. Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification [J]. IEEE Transactions on Image Processing, 1997, 6(8): 1176-1184.
  • 5Podlubny I. Fractional-order systems and PI^λD^μ-controllers [J]. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214.
  • 6Engheta N. On fractional calculus and fractional multipoles in electromagnetism [J]. IEEE Transactions on Antennas Propagation 1996, 44(4) : 554-566.
  • 7Gilboa G, Zeevi Y Y, Sochen N A. Forward and backward diffusion processes for adaptive image enhancement denosing [J]. IEEE Transactions on Image Processing, 2002, 11(7): 689 -703.
  • 8Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 25(8) : 1020-1036.
  • 9Stark J A. Adaptive image contrast enhancement using generalizations of histogram equalization [J]. IEEE Transactions on Image Processing, 2000, 9(5): 889-896.
  • 10Chen H G, Li A, Kaufman L. A fast filtering algorithm for image enhancement [J]. IEEE Transactions on Medical Imaging, 1994, 13(3): 557-564.

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部