摘要
将具有脉冲的分数阶Bagley-Torvik微分方程边值问题巧妙地转化为积分方程,定义加权Banach空间及全连续算子,运用不动点定理获得该边值问题解的存在性定理.举例说明了定理的应用.最后提出有趣的研究问题.
The author converts the boundary value problem for impulsive fractional order Bagley-Torvik differential equation to an integral equation technically (a new method). By defining a weighted function Banach space and a completely continuous operator, some exis- tence results for solutions are established. This analysis relies on the well known Schauder's fixed point theorem. Examples are given to illustrate the main results.
作者
刘玉记
LIU Yuji(School of Statistics and Mathematics,Economics,Guangzhou 510320,China Guangdong University of Finance and)
出处
《数学年刊(A辑)》
CSCD
北大核心
2018年第3期309-330,共22页
Chinese Annals of Mathematics
基金
广东省自然科学基金(No.S2011010001900)
广州市科技计划项目(No.201804010350)的资助