期刊文献+

由特殊箭图诱导的项链李子代数

Necklace Lie Subalgebras Induced by Some Special Arrow
下载PDF
导出
摘要 无限维项链李代数是新的一类无限维李代数,本文重点讨论了由特殊箭图诱导的项链李子代数,并证明了其中一些李子代数是半单李代数. In this paper, a new infinite dimensional necklace Lie algebra is studied. Some Lie subalgebras induced by some special arrow are mainly discussed. It is proved that some Lie subalgebras are semi-simple Lie algebra.
作者 余德民 卢才辉 YU Demin;LU Caihui(College of Mathematics,Hunan Institute of Science and Technology,Yueyang 414006,Hunan,China;College of Mathematics and Computing Science,Capital Normal University Beijing,100037,China)
出处 《数学年刊(A辑)》 CSCD 北大核心 2018年第3期331-340,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11771135)的资助
关键词 项链李代数 半单李代数 子代数 Necklace Lie algebra Semi-simple Lie algebra Subalgebra
  • 相关文献

参考文献4

二级参考文献31

  • 1余德民,卢才辉.李代数L(Z,f,δ)的特殊性质[J].数学进展,2006,35(6):707-711. 被引量:24
  • 2Lothaire M., Combinations on Words [M], Cambridge: Cambridge University Press, 1983.
  • 3Reutenauer C., Free Lie Algebras [M], Oxford: Clarendon Press, 1993.
  • 4Bocklandt R. and Le Bruyn L., Necklace Lie algebras and noncommunicative symplectic geometry [J], Math. Z., 2002, 240(1):141-167.
  • 5Guo J. Y. and Martinez Villa R., Algebra pairs associated to Mckay quivers [J], Comm. in Algebras, 2002, 30(2):1017-1032.
  • 6Peng Liangang, Lie algebras determined by finite Auslander Reiten quivers [J], Comm. in Algebras, 1998, 27(1):235-258.
  • 7Christophoridou C. and Kobotis A., The characteritic elements of special nilpotent Lie algebras of dimension ten [J]. Balkan J. Geom. Appl., 1999, 4(1):9- 17.
  • 8Raf bocklant and Lieven Le Bruyn. Necklace lie algebras and nocommunicative symplectic geometry[J]. Mathematische Zeitschrift, 2002, 240: 141-167.
  • 9Victor Ginzburg, Non-commutative Symplectic Geometry, uiver varieties, and Opera(is[J]. Mathematical Research Letters, 2001, 8(3): 377-400.
  • 10Anne P, Geert V d W. Double Poisson cohomoogy of path algebras of quivers[J]. Journal of Algebra, 2008, 319: 2166-2208.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部