期刊文献+

填充多孔纤维的微细通道内CH_4/空气火焰的稳燃机理 被引量:3

Flame Stabilization Mechanisms of CH_4/Air Mixtures in Mesoscale Channels Filled with Fibrous Porous Media
下载PDF
导出
摘要 在微细通道内填充高孔隙率(0.94)、低导热系数(0.3,W/(m·K))的陶瓷纤维能够有效拓宽驻定火焰波发生的速度范围.为了揭示其稳燃机理,本文进行了数值模拟,结果表明:增大纤维导热系数或者减小孔隙率时,驻定火焰出现的速度范围缩小,而且火焰对上游未燃气体的预热量和向下游的散热量都将增大,但是后者明显高于前者.因此,微细通道内填充纤维型多孔介质后驻定火焰范围变宽的根本原因在于其具有很低的导热系数和很高的孔隙率,有效地减少了火焰向下游传递的热量,提高了火焰稳定性. The velocity limits of stationary flame can be effectively expanded by filling ceramic fibers with high porosity(0.94)and low thermal conductivity(0.3,W/(m·K))in mesoscale channels.To reveal the underlying mechanisms,numerical simulation was conducted.The results show that,by increasing the thermal conductivity or decreasing the porosity of ceramic fibers,the velocity range of stationary flames shrinks noticeably. Quantitative analysis demonstrates that the heat recirculation to upstream mixture and the heat transfer downstream are both enhanced,but the latter is more pronounced than the former.In conclusion,the reasons for the stronger flame stability of the mesoscale channel filled with fibrous porous media are the high porosity and low thermal conductivity of ceramic fibers,which can significantly reduce the heat dissipation from the flame to downstream gases.
作者 向赢 刘毅 范爱武 Xiang Ying;Liu Yi;Fan Aiwu(School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2018年第5期439-445,共7页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51576084)
关键词 微燃烧器 纤维型多孔介质 导热系数 孔隙率 驻定火焰 microscale combustor fibrous porous media thermal conductivity porosity stationary flame
  • 相关文献

参考文献4

二级参考文献35

  • 1张永生,周俊虎,杨卫娟,刘茂省,岑可法.微尺度燃烧中数值模拟模型选择研究[J].中国电机工程学报,2006,26(z1):81-87. 被引量:4
  • 2匡龙,卫尧,吴建.微动力机电系统研究开发以及面临的问题[J].河南科技大学学报(自然科学版),2004,25(5):25-29. 被引量:3
  • 3黄俊,薛宏,潘剑锋,李德桃.微动力系统的若干研究动态和进展[J].世界科技研究与发展,2005,27(1):5-9. 被引量:18
  • 4潘剑锋,杨文明,李德桃,黄俊.微热光电系统原型的设计制造和测试[J].工程热物理学报,2005,26(5):887-890. 被引量:13
  • 5Xue H, Yang W M, Chou S K, et al. Micro thermophotovoltaics power system for portable MEMS devices [ J ]. Microscale Thermophysical Engineering, 2005, 9:85 -98.
  • 6HONG XUE, WENMING YANG, CHOU S. K, et al. Microthermophotovohaics power system for portable MEMS devices [ J ]. Microscale Thermophysical engineering, 2005,9 ( 1 ) : 85 - 97.
  • 7S. Basu, Y. B, Z. M. Zhang. Microscale radiation in thermophotovoltaic devices- A review[ J ]. International Journal of Energy Research, 2006,31:689 - 716.
  • 8PAN J F, HUANG J, LID T, et al. Effects of major parameters on micro combustion for thermophotovohaic energy conversion [ J ]. Journal of Applied Thermophysics Engineering, 2007, 5 -6 (27) :1089 - 1095.
  • 9Fluent Inc. FLUENT User's Guide. Lebanon, USA: Fluent Inc, 1999.
  • 10J.P. Holman. Heat Transfer[ M ]. New York: McGraw - Hill International Book Company, 1981.

共引文献20

同被引文献31

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部