期刊文献+

SQoE KQIs Anomaly Detection in Cellular Networks: Fast Online Detection Framework with Hourglass Clustering

SQoE KQIs Anomaly Detection in Cellular Networks: Fast Online Detection Framework with Hourglass Clustering
下载PDF
导出
摘要 The explosive growth of data volume in mobile networks makes fast online diagnose a pressing search problem. In this paper, an object-oriented detection framework with a two-step clustering, named as Hourglass Clustering, is given. Where three object parameters are chosen as Synthetical Quality of Experience(SQo E) Key Quality Indicators(KQIs) to reflect accessibility, integrality, and maintainability of networks. Then, we choose represented Key Performance Indicators(r KPIs) as cause parameters with correlation analysis. For these two kinds of parameters, a hybrid algorithm combining the self-organizing map(SOM) and The explosive growth of data volume in mobile networks makes fast online diagnose a pressing search problem. In this paper, an object-oriented detection framework with a two-step clustering, named as Hourglass Clustering, is given. Where three object parameters are chosen as Synthetical Quality of Experience(SQo E) Key Quality Indicators(KQIs) to reflect accessibility, integrality, and maintainability of networks. Then, we choose represented Key Performance Indicators(r KPIs) as cause parameters with correlation analysis. For these two kinds of parameters, a hybrid algorithm combining the self-organizing map(SOM)
出处 《China Communications》 SCIE CSCD 2018年第10期25-37,共13页 中国通信(英文版)
基金 supported by the National Basic Research Program of China(973 Program:2013CB329004) the Fundamental Research Funds for the Central Universities
关键词 big data SQoE anomaly detection hourglass clustering codebook. 活动网络 聚类 框架 细胞 联机 搜索问题 面向对象 可维护性
  • 相关文献

参考文献5

二级参考文献63

  • 1INTERNATIONAL TELECOMMUNICATION UNION. ICT facts and figures, the world in 2014[R]. Geneva, 2014.
  • 2CISCO. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014-2019[R].2009.
  • 3KIM J, PAUL A, CROWELL P A, et at. Spin-based computing: device concepts, current statues, and a case study on a high-performance microprocessor[J]. Proceedings of the IEEE, 2015, 103(1): 106-130.
  • 4WEILAND J D, HUMAYUN M S. Visual Prosthesis[J]. Proceedings of the IEEE, 2008, 96(7): 1076- 1084.
  • 5TENENBAUM J B, KEMP C, GRIFFITHS T L, et at. How to grow mind: statistics, structure, and abstraction[J]. Science, 2011, 331: 1279-1285.
  • 6PALMERI T J, GAUTHIER I. Visual object understanding[J]. Nature review neuroscience,S: 291-303.
  • 7KAUP A. Object-based texture coding of moving video in MPEG-4[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 5(1): 5-15.
  • 8AIZAWA K., HUANG T. S. Model-based image coding: advanced video coding techniques for very low bit-rate applications[J]. Proceedings of the IEEE, 1995, 83(2): 259-271.
  • 9ALTUNBASAK Y, TEKALP A M, BOZDAGI G. Two-dimensional object-based coding using a content-based mesh and affine motion parameterization[C]//Proceedings of International Conference on Image Processing (ICIP'95). IEEE Press, 1995.
  • 10EISERT P, WIEGAND T, GIROD B, Model-aided coding: a new approach to incorporate facial animation into motion-compensated video coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(3):344- 358.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部