期刊文献+

基于Delaunay划分结合EM\MPM算法的图像分割方法 被引量:1

Combining the EM\MPM and Delaunay Tessellation for Image Segmentation
下载PDF
导出
摘要 为了克服传统基于区域的图像分割方法对图像初始划分完全随机进而导致算法效率低下的缺点,本文提出了一种基于Delaunay划分并结合最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximization of the Posterior Marginal,MPM)算法的图像分割方法。该方法首先提取图像特征点,并把特征点集作为构建Delaunay三角网的基础点集。利用Delaunay三角网的构建将影像划分成众多彼此连接的超像素,并假设这些超像素内的像素灰度值服从同一独立的正态分布,基于此完成特征场模型的建立,再运用EM\MPM方法分别模拟特征场模型和分割影像。为了验证本文提出的算法能够有效地分割图像,分别对模拟图像和真实图像进行分割测试,并和经典的初始划分完全随机的超像素影像分割算法进行对比,测试结果定性和定量地表明了该方法的有效性和准确性。 In order to overcome the shortcomings that the completely random initial partition leads to the inefficiency of the traditionalimage segmentation methods based on region of image, a method based on Delaunay partition combined with Expectation Maximizationand Maximization of the Posterior Marginal algorithm is proposed. Firstly, the feature points of the image are extracted, and the featurepoints set is used as the fundamental points set of the Delaunay triangulation to construct the Delaunay triangulation. Delaunay triangulation divides the image into several super pixels which are connected each other, assuming that the gray values of pixels in these regions obey the same independent normal distribution, so as to construct the characteristic field model and then combine with the EM/MPM algorithm for image segmentation and model parameter estimation. To verify the proposed algorithm is able to segment images effectively, the simulated image and the real images are segmented and compared with the classical image segmentation algorithm basedsuper pixels which have the completely random initial partition. The qualitative and quantitative results show the validity and accuracyof the proposed method.
作者 高亮 李玉 林文杰 赵泉华 GAO Liang;LI Yu;LIN Wenjie;ZHAO Quanhua(School of Geomatics,Liaoning Technical University,Fuxin 123000,China)
出处 《测绘与空间地理信息》 2018年第10期69-72,共4页 Geomatics & Spatial Information Technology
基金 辽宁省自然科学基金(2015020090) 辽宁工程技术大学研究生教育创新计划项目(YS201607)资助
关键词 特征点提取 DELAUNAY三角网 超像素 EM/MPM算法 图像分割 feature point extraction Delaunay triangulation superpixels EM/MPM algorithm image segmentation
  • 相关文献

参考文献4

二级参考文献43

  • 1曹永锋,孙洪,杨文,徐新.基于MPM准则的无监督SAR图像分割[J].武汉大学学报(信息科学版),2004,29(9):812-815. 被引量:4
  • 2ASKAIil G, Xli A G,LI Y,et al. Automatic determina-tion of number of homogemms regions in SAK images uti-lizing splitting and merging l)ased on a reversible jumpMCMC algorithm [ J ]. Journal of the Indian Society ofRemote Sensing, 2013,41(3): 509-521.
  • 3GREEN P J. Reversible jump Markov chain Monte Carlocomputation and Bayesian model determination [ J ]. Bi-ometrika,1995,82(4) : 711-732.
  • 4RICHARDSON S,GREEN P J. On Bayesian analysis ofmixtures with an unknown number of components [ J ].Journal of the Royal Statistical Society : Series B, 1997,59(4) : 731-792.
  • 5KATO Z. Segmentation of color images via reversiblejump MCMC sampling[ J]. Image and Vision Computing,2008,26(3) : 361-371.
  • 6DRYDEN I L,SCARR M R,TAYLOR C C. Bayesiantexture segmentation of weed and crop images using re-versible jump Markov chain Monte Carlo methods [ J ].Journal of the Royal Statistical Society ; Series C,2003,52(1) : 31-50.
  • 7SILVA A R F. Bayesian mixture models of variable di-mension for image segmentation [ J ]. Computer Methodsand Programs in Biomedicine, 2009,94(1) : 1-14.
  • 8ZHAO Q H, LI Y,LIU Z G. SAR image segmentation u-sing Voronoi tessellation and Bayesian inference appliedto dark spot feature extraction [ J]. Sensors,2013,13(11): 14484-14499.
  • 9LI Y, LI J, CHAPMAN M A. Segmentation of SAR in-tensity imagery with a Voronoi tessellation, Bayesian in-ference ,and Reversible Jump MCMC algorithm [ J ].IEEE Transaction on Geoscience and Remote Sensing,2010,48(4) : 1872-1881.
  • 10ROBERT C P, RYDEN T, TITTERINGTON D M.Bayesian inference in hidden Markov models through thereversible jump Markov chain Monte Carlo method [ J ].Journal of the Royal Statistical Society: Series B,2000,62 (1) : 57-75.

共引文献27

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部