期刊文献+

基于线性光谱混合模型的高光谱遥感岩矿分类研究 被引量:4

Classification of Hyperspectral Remote Sensing Rock Based on Linear Spectral Mixture Model
下载PDF
导出
摘要 针对高光谱遥感信息冗余多、波段相关性比较强的特点,对预处理的影像进行最小噪声分离(Minimum Noise Fraction,MNF)实现降维和去相关,然后利用纯净像元指数(Pixel Purity Index,PPI)进行端元选择,最终选择斜钠钙石、阳起石、水铝石、斧石、锌蒙脱石5种端元,基于线性光谱混合模型利用IDL语言编程实现Cuprite地区高光谱影像矿物的分类。利用kappa系数对实验分类结果进行精度分析,验证了基于线性光谱混合模型进行高光谱矿物分类的有效性,从而更好地进行矿物识别研究。 In view of the characteristic of high spectrum remote sensing information redundancy and strong band correlation. The Minimum Noise Fraction, MN (MNF transform) is used to reduce the dimension of the preprocessed image. The Pixel Purity Index algorithm for end member selection, final choice of oblique sodium calcium stone, actinolite, aluminum water stone, axinite, zinc montmorillonite five end member. Mineral classification based on linear spectral mixture model using IDL programming. Through the accuracy analysis of the experimental results, it is proved that the method is effective and practical, and it is better to carry out the researchof mineral identification.
作者 吴辉 闫晓天 刘洋 WU Hui;YAN Xiaotian;LIU Yang(Yuyao City Planning and Mapping Design Institute,Yuyao 315400,China;Water Conservancy Planning and Designing Institute of Chifeng,Chifeng 024000,China;Machinery Industry Survey and Design Research Institute Co.Ltd.,Xi′an 710043,China)
出处 《测绘与空间地理信息》 2018年第10期176-178,181,共4页 Geomatics & Spatial Information Technology
关键词 高光谱遥感 线性光谱混合模型 MNF变换 PPI算法 矿物分类 端元 hyperspectral remote sensing linear spectral mixture model MNF transform PPI algorithm mineral classification;end element
  • 相关文献

参考文献3

二级参考文献56

  • 1薛绮,匡纲要,李智勇.基于线性混合模型的高光谱图像端元提取[J].遥感技术与应用,2004,19(3):197-201. 被引量:30
  • 2ROBERTS D A,SMITH M O,ADAMS J B.Green vegetation,non-photosynthetic vegetation,and soil in AVIRIS[J].Remote Sensing of Environment,1993,44:255-269.
  • 3LU D S,BATISTELLA M,MORAN E.Multi-temporal spectral mixture analysis for Amazonian land-cover change detection[J].Canada Journal of Remote Sensing,2004,30(1):87 -100.
  • 4LU D,BATISTELLA M,MORAN E.Linear spectral mixture analysis of TM data for land-use and land-cover classification in Rondonia,Brazilian Amazon[A].Proceedings of the ISPRS Commission Ⅳ Symposium:Geospatial Theory,Processing and Applications[C].Ottawa:SPIE,2002.557-562.
  • 5LU D S,WENG Q H.Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery[J].Photogrammetric Engineering & Remote Sensing,2004,70(9):1053-1062.
  • 6SMITH M O,JOHNSON P E,ADAMS J B.Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis[J].Journal of Geophysical Research,1985,90:792-804.
  • 7HYDE R F,VESPER N J.Some effects of resolution cell size on image quality[Z].Landsat Data Users Notes,1983.9-12.
  • 8ADAMS J B,SMITH M O,GILLESPIE A R.Imaging spectroscopy:Interpretation based on spectral mixture analysis[A].Remote Geochemical Analysis:Elemental and Mineralogical Composition[C].New York:Cambridge University Press,1993.145-166.
  • 9ROBERTS D A,GARDNER M,CHURCH R,et al.Mapping Chaparral in the Santa Monica Mountains using multiple endmember spectral mixture model[J].Remote Sensing of Environment,1998,65:267-279.
  • 10RASHED T,WEEKS J R,STOW D,et al.Measuring temporal compositions of urban morphology through spectral mixture analysis:Toward a soft approach to change analysis in crowded cities[J].International Journal of Remote Sensing,2005,26 (4):699-718.

共引文献76

同被引文献66

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部