摘要
针对高光谱遥感信息冗余多、波段相关性比较强的特点,对预处理的影像进行最小噪声分离(Minimum Noise Fraction,MNF)实现降维和去相关,然后利用纯净像元指数(Pixel Purity Index,PPI)进行端元选择,最终选择斜钠钙石、阳起石、水铝石、斧石、锌蒙脱石5种端元,基于线性光谱混合模型利用IDL语言编程实现Cuprite地区高光谱影像矿物的分类。利用kappa系数对实验分类结果进行精度分析,验证了基于线性光谱混合模型进行高光谱矿物分类的有效性,从而更好地进行矿物识别研究。
In view of the characteristic of high spectrum remote sensing information redundancy and strong band correlation. The Minimum Noise Fraction, MN (MNF transform) is used to reduce the dimension of the preprocessed image. The Pixel Purity Index algorithm for end member selection, final choice of oblique sodium calcium stone, actinolite, aluminum water stone, axinite, zinc montmorillonite five end member. Mineral classification based on linear spectral mixture model using IDL programming. Through the accuracy analysis of the experimental results, it is proved that the method is effective and practical, and it is better to carry out the researchof mineral identification.
作者
吴辉
闫晓天
刘洋
WU Hui;YAN Xiaotian;LIU Yang(Yuyao City Planning and Mapping Design Institute,Yuyao 315400,China;Water Conservancy Planning and Designing Institute of Chifeng,Chifeng 024000,China;Machinery Industry Survey and Design Research Institute Co.Ltd.,Xi′an 710043,China)
出处
《测绘与空间地理信息》
2018年第10期176-178,181,共4页
Geomatics & Spatial Information Technology
关键词
高光谱遥感
线性光谱混合模型
MNF变换
PPI算法
矿物分类
端元
hyperspectral remote sensing
linear spectral mixture model
MNF transform
PPI algorithm
mineral classification;end element