期刊文献+

重大工程项目多源索赔冲突信息融合决策的D-S算法

D-S Algorithm for Multi-Source Claim Conflict Information Fusion Decision of Major Project
下载PDF
导出
摘要 重大索赔处理往往是多方共同参与决策的过程,多源决策者对重大工程项目索赔干扰事件的判断具备很大的冲突认知随机性,如何科学把握决策对象实质是亟待关注的问题。针对多源冲突情况下的决策信息特性,提出重大工程项目多源索赔冲突信息融合决策框架,分析融合决策的D-S(Dempster-Shafer)算法。研究表明,该方法能够对多源索赔冲突信息进行融合决策,在多源冲突条件下满足各方利益,降低索赔决策对工程进程带来的负面影响。 Major claim handling usually involves multiple decision makers. Each decision maker has great randomness in judging the interference events of major projects. How to scientifically grasp the essence of decision objects is a matter of urgent concern. In view of the characteristics of decision information under multi-source conflict, this paper proposes a decision-making framework for major project multi-source claim conflict information fusion, and analyzes the D-S(Dempster-Shafer) algorithm for fusion decision. The research shows,this method can fuse decision information of multi-source claim conflict. This algorithm can satisfy the interests of all parties under the condition of multi-source conflict and reduce the negative impact of claims decisions on the engineering process.
作者 刘勇 孙雷霆 LIU Yong;SUN Lei-ting(Naval Engineering Quality Supervision Station,Beijing 100000,China;Naval Service Academy,Tianjin 300450,China)
出处 《价值工程》 2018年第32期182-184,共3页 Value Engineering
关键词 重大工程项目 索赔 多源冲突信息 融合决策 D-S算法 major project claim multi-source conflict information fusion decision Dempster-Shafer
  • 相关文献

参考文献4

二级参考文献71

  • 1王众托.关于知识管理若干问题的探讨[J].管理学报,2004,1(1):18-24. 被引量:42
  • 2毕鹏程,席酉民,王益谊.群体思维理论的发展及其实证研究综述[J].管理科学学报,2004,7(4):75-84. 被引量:15
  • 3邢清华,雷英杰,刘付显.一种按比例分配冲突度的证据推理组合规则[J].控制与决策,2004,19(12):1387-1390. 被引量:42
  • 4Fukunaga K, Hostetler L. Optimization of k nearest neighbor density estimates[J]. Information Theory, 1973,19 (3), 320- 326.
  • 5Hafer G. Perspectives on the theory and practice of belief functions[J]. International Journal of Approximate Reasoning,1990, (4) :323-362.
  • 6Denoeux T. A k-nearest neighbor classification rule based on Dempster-Shafer theory[C]. Systems,Man and Cybernetics, 1995,25 (5) : 804 - 813.
  • 7Denoeux T. A neural network classifier based on Dempster-Shafer theory[J]. IEEE Transactions on Systems, Man and Cybernetics-Part A, 2000,30 (2) :131-150.
  • 8Yazdani A, Hoffmann U. Classification of EEG signals using Dempster Shafer theory and a k-nearest neighbor classifier[J]. IEEE Transactions on Systems, Man ,and Cybernetics, 2001,31 (1) : 327- 330.
  • 9Pal N R, Ghosh S. Some classification algorithms integrating Dempster-Shafer theory of evidence with the rank nearest neighbor rules[C]//Proceedings of the 4th International IEEE EMBS Conference on Neural Engineering, 2009,31 (1) : 59-66.
  • 10Laskey K B, Levitt T S. Artificial intelligence: uncertainty [ C]//International Encyclopedia of the Social & Behavioral Sciences,2001:799-805.

共引文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部