期刊文献+

基于贝叶斯攻击图的工控系统动态风险评估 被引量:5

Dynamic risk assessment of industrial control system based on bayesian attack graph
下载PDF
导出
摘要 针对工业控制系统信息安全动态风险评估问题,将攻击图与贝叶斯理论结合,提出一种基于贝叶斯攻击图的工业控制系统信息安全动态风险评估模型。基于贝叶斯攻击图网络结构,结合先验分布和入侵检测系统获得的实时攻击样本数据运用贝叶斯参数学习对节点条件概率表进行动态调节,实现对目标网络整体安全性的动态风险评估。仿真结果分析证明了该模型的有效性和准确性,可为实施动态安全防护策略提供决策依据。 Aiming at the cyber security risk assessment of the industrial control system, this paper combines the attack graph with Bayesian theory and proposes a dynamic risk assessment model of information security based on Bayesian attack graph in industrial control system. Based on the network structure of Bayesian attack graph, real time attack sample data from intrusion detection system are used as the inferring evidence of Bayesian attack graph, and the conditional probabilities of the nodes are adjusted accordingly, thus the cyber security risk of the target industrial control system can be assessed dynamically. The simulation verifies the feasibility and accuracy of the proposed method which can provide decision-making support for dynamic cyber security protection.
作者 常昊 秦元庆 周纯杰 CHANG Hao;QIN Yuan-qing;ZHOU Chun-jie(School of Automation,Huazhong University of Science and Technology,Key Laboratory of Ministry of Education for Image Processing and Intelligent Control,Wuhan 430074,China)
出处 《信息技术》 2018年第10期62-67,72,共7页 Information Technology
基金 国家自然科学基金重点项目(61433006)
关键词 贝叶斯攻击图 贝叶斯参数学习 工控系统动态风险评估 Bayesian attack graph Bayesian parameter learning dynamic risk assessment of industrialcontrol system
  • 相关文献

参考文献8

二级参考文献50

  • 1[1]Heckeman D. Bayesian networks for data mining[J]. Data Mining and Knowledge Discovery. 1997,1, 79-119.
  • 2[2]Lauritzen S L. The EM algorithm for graphical association models with missing data[J]. Comput. Stat. Data Anal. 1995(19):191-201.
  • 3[3]Ira Cohen, Alexandre Bronstein, Fabio G.Cozman. Online learning of Bayesian network parameters[EB/OL]. http://www.hpl.hp.com/techreports/2001/HPL-2001-156.pdf.
  • 4[4]Eric Bauer, Daphne Koller, Yoram Singer. Update rules for parameter estimation in Bayesian networks[C]. In:Proceeding of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), Providence, Rhode Island, August 1-3,1997,3-13.
  • 5[5]Zhang Shao-zhong. YANG Nan-hai. WANG Xiu-kun. Construction and application of bayesian networks in flood decision-supporting system[C]. Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 4-5 November 2002, ICMLC2002 IEEE, Vol2,718-722.
  • 6Computer Technology Associates. Information security: network assessment white paper [EB/OL]. [2002-06-14]. http://www.cta. com/content/docs/Net_Ass.
  • 7SAHA D. Extending logical attack graph for efficient vulnerabili- ty analysis [C]// Proceedings of 15th ACM Conference on Com- puter and Comm. Security. New York, USA: ACM, 2008: 63-74.
  • 8DEWRI R, POOLSAPPASITN, RAY I, et al. Optimal security hardening using multi-objective optimization on attack tree models of networks [C]// Proc. 14th ACM Conf. Computer and Comm. Security. [S.1.]: ACM, 2007: 204-213.
  • 9JAJODIA Sushil, NOEL Steven. Topological vulnerability analy- sis [J]. Advances in Information Security, 2010, 46(4). 139-154.
  • 10SCHIFFMAN M. Common vulnerability scoring system (CVSS) [EB/OL]. [2007-06-20]. http ://www.first.org/cvss/cvss-guide.

共引文献79

同被引文献39

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部