期刊文献+

基于分簇的近似KNN的查询优化算法

Approximate KNN Optimizing Queries Algorithm Based on Clustering
下载PDF
导出
摘要 针对无线传感器网络查询过程消耗较多能量的情况,提出考虑位置的数据查询算法。算法首先提出位置-数据分簇算法,利用节点的地理位置信息降低向存储节点传输数据消耗的能量,由于簇之间的测量范围有重叠问题,提出基于数据离散度的查询个数分配原则,将提出的近似KNN查询优化算法与Na6ve算法、KVC算法比较,仿真结果表明,提出的算法具有更低的平均传包率,提高了网络的生存时间。 To solve the problem that the query process consumes more energy in wireless sensor networks,a location-aware KNN value query algorithm is proposed,and a locationvalue clustering algorithm is proposed which employs the location information to reduce the node energy consumption of nodes during transmission. Because the measuring range between clusters will overlap,a principle to determine the query number is proposed. Simulation results showthat in comparison with the Na6ve algorithm and kVC algorithm,the proposed algorithm has lower average rate of transmission packet and longer network lifetime.
作者 黄月 HUANG Yue(Shenyang Ligong University,Shenyang 110159,China)
出处 《沈阳理工大学学报》 CAS 2018年第3期5-9,共5页 Journal of Shenyang Ligong University
关键词 无线传感器网络 K近邻 数据查询 分簇 wireless sensor networks K-nearest neighbor value query clustering
  • 相关文献

参考文献2

二级参考文献25

  • 1[1]B Babcock,C Olston.Distributed Top-k Monitoring.In:Proc of the 2003 ACM SIGMOD Int'l Conf on Management of Data.New York:ACM Press,2003.28-39
  • 2[2]A Silberstein,B Rebecca,J Yang.Constraint chaining:On energy-efficient continuous monitoring in sensor networks.In:The 2006 ACM SIGMOD Int'l Conf on Mangement of Data.New York:ACM Press,2006
  • 3[3]A Deshpande,C Guestrin,S Madden,et al.Model-driven data acquisition in sensor networks.In:Proc of the 2004 Int'l Conf on Very Large Data Bases.San Francisco:Morgan Kaufmann,2004.588-599
  • 4[4]A Silberstein,R Braynard,C Ellis,et al.A sampling-based approach to optimizing Top-k queries in sensor network.In:Proc of the 2006 Int'l Conf on Data Engineering.Los Alamitos:IEEE Computer Society Press,2006
  • 5[5]M J Wu,X Y Tang.Monitoring Top-k query in wireless sensor networks.In:Proc of the 2006 Int'l Conf on Data Engineering.Los Alamitos:IEEE Computer Society Press,2006
  • 6[6]R Cheng,B Kao,S Prabhakar,et al.Adaptive stream filters for entity-based queries with non-value tolerance.In:Proc of the 2005 Int'l Conf on Very Large Data Bases.San Francisco:Morgan Kaufmann,2005
  • 7[7]A Silberstein,K Munagala,J Yang.Energy-efficient monitoring of extreme values in sensor networks.In:Proc of the 2006 ACM SIGMOD Int'l Conf on Management of Data.New York:ACM Press,2006.169-180
  • 8[8]Z X Song,N Roussopoulos.K-nearest neighbor search for moving query point.In:Proc of the 7th Int'l Symp on Spatial and Temporal Databases.Berlin:Springer,2001.79-96
  • 9[9]TAO Project.http://ita.ee.lbl.gov/html/contrib/WorldCup.html,2006-12
  • 10[10]Intel Berkeley Research Lab.http://www.pmel.noaa.gov/tao/data.deliv,2004-04

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部